terclim by ICS banner
IVES 9 IVES Conference Series 9 An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Abstract

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest. 

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Article

Authors

Cécile Laurent1,2,3, Gilles Le Moguédec4, James Taylor3, Thibaut Scholasch1, Bruno Tisseyre3 and Aurélie Metay2

1Fruition Sciences, 34000 Montpellier, France
2ABSYS, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
3ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
4AMAP, Univ. Montpellier, INRAE, Cirad BNRS, IRD, Montpellier, France

 

Contact the author

Keywords

extended growing degree days (eGDD), bayesian functional linear regression with sparse steps functions (BLiSS), yield development, operational conditions, weather

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Shading nets for the adaptation to climate change: effect on vine physiology and grape quality 

Viticulture is threatened by the environmental modification caused by climate change. Higher temperatures determine an acceleration of the ripening process, which can be detrimental to wine quality. In the mediterranean area, heat waves are also increasingly frequent, with consequent blocking of the vegetative activity of the vines and increased susceptibility to sunburn damage. thus, adaptation strategies are necessary to reduce stress and improve the quality of grape production. Amongst the various techniques available, shading nets represent an interesting alternative for their effects on canopy microclimate (i.e., reduction of photosynthetic activity, improvement of water use efficiency, and slowing down in the ripening process).

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes