terclim by ICS banner
IVES 9 IVES Conference Series 9 The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

Abstract

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture. 

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Article

Authors

Johanna Döring1, Frank Will2, Otmar Löhnertz3 and Randolf Kauer1

1Hochschule Geisenheim University, Institute of General and Organic Viticulture, Geisenheim, Germany
2Hochschule Geisenheim University, Institute of Beverage Research, Geisenheim, Germany
3Hochschule Geisenheim University, Institute of Soil Science and Plant Nutrition, Geisenheim, Germany

Contact the author

Keywords

integrated viticulture, organic, biodynamic

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.

Characterization of non-Saccharomyces yeast and its interaction with Saccharomyces cerevisiae with investigation of fermentation kinetics and aromatic composition

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

The state of the climate

The climate has warmed over the past century or more bringing about changes in numerous aspects in both earth and human systems

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.