terclim by ICS banner
IVES 9 IVES Conference Series 9 Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Abstract

Biodiversity conservation and restoration are essential for guarantee the provision of ecosystem services associated to vineyard agroecosystem such as climate regulation trough carbon sequestration and control of pests and diseases. Most of published research dealing with the complexity of the vineyard agroecosystems emphasizes the necessity of innovative approaches, including the integration of information at different temporal and spatial scales and development of systemic analysis based on modelling. A biodiversity survey was conducted in the Franciacorta wine-growing area (Lombardy, Italy), one of the most important Italian wine-growing regions for sparkling wine production, considering a portion of the territory of 112 ha. The area was divided into several Environmental Units (EUs), defined as a whole vineyard or portion of vineyard homogenous in terms of four agronomic characteristics: planting year, planting density, cultivar, and training system. In each EU a set of compartments was identified and characterised by specific variables. The compartments are meteorology, morphology (altitude, slope, aspect, row orientation, and solar irradiance), ecological infrastructures and management. The landscape surrounding EU was also characterised in terms of land-use in a buffer zone of 500 m. For each component a specific methodology was identified and applied. Different statistical approaches were used to evaluate the method to integrate the information related to different compartments within the EU and related to the buffer zone. These approaches were also preliminarily evaluated for their ability to describe the contribution of biodiversity and landscape components to ecosystem services. This methodological exploration provides useful indication for the development of a fully systemic approach to structural and functional biodiversity in vineyard agroecosystems, contributing to promote a multifunctional perspective for the all wine-growing sector. 

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Poster

Authors

Isabella Ghiglieno1, Anna Simonetto1, Elia Lipreri1, Stefano Armiraglio2, Ivo Rigamonti3, Luigi Mariani1,4, Pierluigi Donna5, and Gianni Gilioli1

1Department of Civil, Environmental, Architectural Engineering and Mathematics, Agrofood Lab, University of Brescia, Brescia, Italy
2Museum of Natural Sciences, Municipality of Brescia, Brescia, Italy
3Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
4Lombardy Museum of Agricultural History, Sant’Angelo Lodigiano , Italy
5Sata Studio Agronomico S.r.l. – S.t.p., Brescia, Italy

Contact the author

Keywords

vineyard agroecosystem, biodiversity, landscape, ecological infrastructures, management

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Delaying irrigation initiation linearly reduces yield with little impact on maturity in Pinot noir

When to initiate irrigation is a critical annual management decision that has cascading effects on grapevine productivity and wine quality in the context of climate change. A multi-site trial was begun in 2021 to optimize irrigation initiation timing using midday stem water potential (ψstem) thresholds characterized as departures from non-stressed baseline ψstemvalues (Δψstem). Plant material, vine and row spacing, and trellising systems were concomitant among sites, while vine age, soil type, and pruning systems varied. Five target Δψstem thresholds were arranged in an RCBD and replicated eight times at each site: 0.2, 0.4, 0.6, 0.8, and 1.0 MPa (T1, T2, T3, T4, and T5, respectively). When thresholds were reached, plots were irrigated weekly at 70% ETc. Yield components and berry composition were quantified at harvest. To better generalize inferences across sites, data were analyzed by ANOVA using a mixed model including site as a random factor. Across sites, irrigation was initiated at Δψstem = 0.24, 0.50, 0.65, 0.93, and 0.98 MPa for T1, T2, T3, T4, and T5, respectively. Consistent significant negative linear trends were found for several key yield and berry composition variables. Yield decreased by 12.9, 15.9, 19.5, and 27.4% for T2, T3, T4, and T5, respectively, compared to T1 (p < 0.0001) across sites that were driven by similarly linear reductions in berry weight (p < 0.0001). Comparatively, berry composition varied little among treatments. Juice total soluble solids decreased linearly from T1 to T5 – though only ranged 0.9 Brix (p = 0.012). Because producers are paid by the ton, and contracts simply stipulate a target maturity level, first-year results suggest that there is no economic incentive to induce moderate water deficits before irrigation initiation, regardless of vineyard site. Subsequent years will further elucidate the carryover effects of delaying irrigation initiation on productivity over the long term.

Pruning vine-shoots as a new enological additive to differentiate and improve the quality of wines

The objective of these work was to demonstrate that toasted fragments of pruning vine-shoots added to the wines after fermentation provide them with differentiated aromatic notes and improve their quality.

Application of viticulture zoning in Istria (Croatia) as important element for valorization of all territory resources (product, environment, tourism and others)

Un projet touristique innovant est en cours dans la zone historique croate d’Istrie Centrale, autour de la magnifique ville de Motovun. L’approche méthodologique repose sur le concept de «Système Productif-Global du Territoire» et s’appuie tout particulièrement sur celui de « Zonage Vitivinicole ». Elle tient compte de toutes les facettes, définies dans celui de « Grand Zonage » (Cargnello G., 1999).