terclim by ICS banner
IVES 9 IVES Conference Series 9 Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Abstract

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed. Traditional techniques for fungicide sensitivity monitoring usually provide a qualitative information on fungicide resistance, limited presence/absence, and lack the resolution for high-throughput quantification and isolation of resistant individuals within pathogen populations. To overcome this limitation, an automated and high-throughput approach, based on flow cytometry and fluorescence-activated cell sorting, was developed on field sporangia populations. This method enables the identification and selection of single, live sporangia from a heterogenous field spore suspension, followed by inoculation on leaf discs treated with the selected fungicides. The resistant individuals, identified by the ability of growing at discriminatory rates of the fungicides or by dose-response analysis, are then quantified and isolated in a single assay, marking a significant advancement in sensitivity monitoring. The development of an antiresistance strategy, based on the sensitivity profile of the population, aims to preserve efficacy across all modes of action and achieve optimal disease control.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Beatrice Lecchi*, Giuliana Maddalena, Mattia Peracchi, Filippo Fanchi, Silvia Laura Toffolatti

Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano

Contact the author*

Keywords

plant disease, integrated pest management, disease control, fungicide resistance, Plasmopara viticola

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Insights into the stable isotope ratio variability of hybrid grape varieties

The wine industry faces the consumer’s increasing demand for a sustainable and environmentally-friendly production [1]. This demand has been shared and boosted by the European Union within the European Green Deal in the Farm to Fork strategy that aims to reduce a 50% the pesticide utilisation in farming systems. Among the agronomical approaches so far proposed, the use of mould resitant hybrid varieties -based on crossings of Vitis vinifera with other Vitis spp [2]- with a high tolerance to the attack of vine patogens is gaining the vinegrowers attention and the production area is continuously increasing

Simplifying the measurement of different forms of cu in wines and strategies for efficient removal

Copper (Cu) is known to substantially impact wine stability through oxidative, reductive or colloidal phenomena. Recent work has shown that Cu exists predominantly in a sulfide-bound form, which may act as a potential source of sulfidic off-odours in wine and hence contribute to reductive flavours

The importance of landscape in wine quality perception: l’importanza del paesaggio nella percezione qualitativa del vino

The wine quality is a characteristic that is both difficult to define and communicate, because the quality attributes can be divided into intrinsic (objective, such as alcohol degree, acidity

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.