terclim by ICS banner
IVES 9 IVES Conference Series 9 Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Abstract

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed. Traditional techniques for fungicide sensitivity monitoring usually provide a qualitative information on fungicide resistance, limited presence/absence, and lack the resolution for high-throughput quantification and isolation of resistant individuals within pathogen populations. To overcome this limitation, an automated and high-throughput approach, based on flow cytometry and fluorescence-activated cell sorting, was developed on field sporangia populations. This method enables the identification and selection of single, live sporangia from a heterogenous field spore suspension, followed by inoculation on leaf discs treated with the selected fungicides. The resistant individuals, identified by the ability of growing at discriminatory rates of the fungicides or by dose-response analysis, are then quantified and isolated in a single assay, marking a significant advancement in sensitivity monitoring. The development of an antiresistance strategy, based on the sensitivity profile of the population, aims to preserve efficacy across all modes of action and achieve optimal disease control.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Beatrice Lecchi*, Giuliana Maddalena, Mattia Peracchi, Filippo Fanchi, Silvia Laura Toffolatti

Università degli Studi di Milano, Dipartimento di Scienze Agrarie e Ambientali – DISAA, Via Celoria 2, 20133 Milano

Contact the author*

Keywords

plant disease, integrated pest management, disease control, fungicide resistance, Plasmopara viticola

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.

Plastid genomics of Vitis vinifera L. for understanding the molecular basis of  grapevine (Vitis vinifera L.) domestication

The precise molecular mechanisms underlying the domestication of grapevine (Vitis vinifera L.) Are still not fully understood. In the recent years, next-generation sequencing (NGS) of plastid genomes has emerged as a powerful and increasingly effective tool for plant phylogenetics and evolution. To uncover the biological profile of the grapevine domestication process comprehensively, an investigation should encompass both the cultivated varieties (V. vinifera subsp. Vinifera) and their wild ancestors V. vinifera subsp. Sylvestris) across all potential sites of their distribution and domestication.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures