terclim by ICS banner
IVES 9 IVES Conference Series 9 Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Grapevine yield-gap: identification of environmental limitations by soil and climate zoning in Languedoc-Roussillon region (south of France)

Abstract

Grapevine yield has been historically overlooked, assuming a strong trade-off between grape yield and wine quality. At present, menaced by climate change, many vineyards in Southern France are far from the quality label threshold, becoming grapevine yield-gaps a major subject of concern. Although yield-gaps are well studied in arable crops, we know very little about grapevine yield-gaps. In the present study, we analysed the environmental component of grapevine yield-gaps linked to climate and soil resources in the Languedoc Roussillon. We used SAFRAN data and IGP Pays d’Oc wine yields from 2010 to 2018. We selected climate and soil indicators proving to have a significant effect on average wine yield-gaps at the municipality scale. The most significant factors of grapevine yield were the Soil Available Water Capacity; followed by the Huglin Index and the Climatic Dryness Index. The Days of Frost; the Soil pH; and the Very Hot Days were also significant. Then, we clustered geographical zones presenting similar indicators, facilitating the identification of resources yield-gaps. We discussed the number of zones with the experts of IGP Pays d’Oc label, obtaining 7 zones with similar limitations for grapevine yield. Finally, we analysed the main resources causing yield-gaps and the grapevine varieties planted on each zone. Mapping grapevine resource yield-gaps are the first stage for understanding grapevine yield-gaps at the regional scale.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Hugo Fernandez-Mena1,2, Nicolas Guilpart 3, Philippe Lagacherie4, Renan Le Roux5, Mayeul Plaige1, Maxime Dumont1, Marine Gautier1, Jean-Marc Touzard6, Hervé Hannin7 and Christian Gary1

1UMR ABSys, AgroBiodiversified Systems, Montpellier, France
2UMR EMMAH, Modelling of Mediterranean Agroecosystems, Avignon, France
3UFR DISC, Cropping systems of Agroparistech, Paris, France
4UMR LISAH, Interactions in Soils and Water in Agroecosystems, Montpellier, France
5U. Agroclim, Agriculture and Climate, Avignon, France
6UMR Innovation, Montpellier, France
7UMR MoISA, Markets, Institutions and Strategies in Agriculture, Montpellier, France

Contact the author

Keywords

grapevine yield-gaps, climate and soil indicators, vineyard regional mapping, yield declining

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

L’évolution des Appellations d’Origine aux Etats-Unis

Un peu d’histoire pour nous efforcer de mettre le sujet des appellations dans un contexte général. Six cents ans avant Jésus-Christ, le Côte du Rhône était plantée en vignes peu après l’arrivée des Grecs

Le zonage viticole en Italie. État actuel et perspectives futures

Over the past few decades, viticultural research has made numerous contributions which have made it possible to better understand the behavior of the vine as well as its response to the conditions imposed on it by the environment and agronomic practices. However, these results have only rarely been used in the practical management of vineyards because the research has been carried out using partial experimental models where reality is only represented by a few factors which are sometimes even made more complex by the introduction of elements foreign to the existing situation and difficult to apply to production (varieties, methods of cultivation, management techniques, etc.). To these reasons, one could add a low popularization of the results obtained, as well as the difficulty of implementing the scientific contributions, which does not allow the different production systems to fully express their potential. This limit of viticultural research can only be exceeded by the design of integrated projects designed directly on and for the territory. Indeed, only the integrated evaluation of a viticultural agro-system, which can be achieved through zoning, makes it possible to measure, or even attribute to each element of the system, the weight it exerts on the quality of the wine.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.