terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial determination of areas in the Western Balkans region favorable for organic production

Spatial determination of areas in the Western Balkans region favorable for organic production

Abstract

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

The basis for production of organic grapes and wine is the achieved ideal balance between all abiotic and anthropogenic terroir factors, and one of the concepts for creating such a complex system is the selection of areas and locations with optimal conditions for (in this case organic) production of grapes and wine. This paper presents spatial determination of areas and localities that could potentially satisfy conditions for organic production of grapes and wine. Research included the territory of Western Balkans, that is, territories of members of the SWG RRD. Being the key topographic terroir factor for spatial determination of areas with favorable conditions for organic production of grapes and wine, exposure of terrains up to 600 m elevation was examined. Application of the digital elevation model (DEM) in the ArcGIS software selected areas with south, southeast and southwest terrain exposure as the most favorable exposure with respect to Western Balkans. The analyzed climate terroir factor that is significant for spatial selection of areas with high potential for organic production of grapes and wine was wind speed. GIS technology, with use of raster data from the Global Wind Atlas application, was used to select areas with favorable winds. Spatial and attribute data on median annual wind speeds in the interval between 4 and 6 m/s and in the interval between 6 and 8 m/s was analyzed.

 The biggest wine producer that currently also has the most surfaces under organic vineyards in the Western Balkans region is North Macedonia. However, after the research and spatial analysis was carried out it was determined that most of the selected surfaces with favorable exposure and wind speeds can be found in Serbia and Bosnia and Herzegovina, and the highest share of determined favorable surfaces in comparison with total surfaces of relevant countries/territories can be found in Serbia and Albania.

 With respect to the share of surfaces of selected areas with favorable exposure for potential organic production of grapes in comparison with the surfaces of zoned wine-growing areas, Montenegro has the highest potential with almost 6% of such favorable surfaces. Considering that the Western Balkans region has the spatially determined potential for organic production on surfaces totaling 173,252.52 ha according to the terroir factors examined in this paper, the possibility for increasing organic production of grapes and wine in specific spatially determined locations in members of SWG RRD is significant. All of this indicates the necessity for more active use of such positive terroir potentials of wine-growing areas in this part of Europe.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Darko Jaksic1, Vesna Maras2, Milenko Blesic3, Tatjana Jovanovic-Cvetkovic4, Klime Beleski5, Dragoslav Ivanisevic6, Ylber Kuci7, Elton Basha8 and Ivan Bradic9

1Centre for Viticulture and Oenology Niš, Belgrade, Serbia
2University of Donja Gorica, Faculty for Food Technology, Food Safety and Ecology, Podgorica, Montenegro
3University of Sarajevo, Faculty of Agriculture and Food Sciences, Sarajevo, Bosnia and Herzegovina
4University of Banja Luka, Faculty of Agriculture, Banja Luka, Bosnia and Herzegovina
5University Ss. Cyril and Methodius, Institute of Agriculture, Department for Viticulture and Oenology, Skopje, North Macedonia
6University of Novi Sad, Faculty of Agriculture, Department for Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Novi Sad, Serbia
7Department for Vineyards and Wine, MAFRD, Kosovo
8Agricultural University of Tirana, Tirana, Albania
9Centre for Viticulture and Oenology Niš, 37230 Aleksandrovac, Serbia

Contact the author

Keywords

terroir, terrain exposure, wind speed, organic production of grapes and wine, Western Balkans region

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Vacuum distillation of Muscaris pomace: temperature effects on aroma composition

The consumption of wine in traditional wine-producing countries like Italy, Spain, and France is decreasing.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Wood from barrique: release of phenolic compounds and permeability to oxygen

Chemical and sensory changes occurring in red wine during ageing in oak barrique are due to the slow and gradual entrance of oxygen along with a release of ellagic tannin from the wood. Though oxygen can enter the cask through the bunghole, it is not clear the role of permeation through the wood staves as well as the amount of oxygen entering by permeation. The distribution of the released ellagic tannins in the wine ageing is also unknown. The oxygen passing through the bunghole may have a different wine ageing effect compared to the oxygen permeating through the wooden staves owing to the uneven ellagic tannin concentration throughout the wine.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.