terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial determination of areas in the Western Balkans region favorable for organic production

Spatial determination of areas in the Western Balkans region favorable for organic production

Abstract

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

The basis for production of organic grapes and wine is the achieved ideal balance between all abiotic and anthropogenic terroir factors, and one of the concepts for creating such a complex system is the selection of areas and locations with optimal conditions for (in this case organic) production of grapes and wine. This paper presents spatial determination of areas and localities that could potentially satisfy conditions for organic production of grapes and wine. Research included the territory of Western Balkans, that is, territories of members of the SWG RRD. Being the key topographic terroir factor for spatial determination of areas with favorable conditions for organic production of grapes and wine, exposure of terrains up to 600 m elevation was examined. Application of the digital elevation model (DEM) in the ArcGIS software selected areas with south, southeast and southwest terrain exposure as the most favorable exposure with respect to Western Balkans. The analyzed climate terroir factor that is significant for spatial selection of areas with high potential for organic production of grapes and wine was wind speed. GIS technology, with use of raster data from the Global Wind Atlas application, was used to select areas with favorable winds. Spatial and attribute data on median annual wind speeds in the interval between 4 and 6 m/s and in the interval between 6 and 8 m/s was analyzed.

 The biggest wine producer that currently also has the most surfaces under organic vineyards in the Western Balkans region is North Macedonia. However, after the research and spatial analysis was carried out it was determined that most of the selected surfaces with favorable exposure and wind speeds can be found in Serbia and Bosnia and Herzegovina, and the highest share of determined favorable surfaces in comparison with total surfaces of relevant countries/territories can be found in Serbia and Albania.

 With respect to the share of surfaces of selected areas with favorable exposure for potential organic production of grapes in comparison with the surfaces of zoned wine-growing areas, Montenegro has the highest potential with almost 6% of such favorable surfaces. Considering that the Western Balkans region has the spatially determined potential for organic production on surfaces totaling 173,252.52 ha according to the terroir factors examined in this paper, the possibility for increasing organic production of grapes and wine in specific spatially determined locations in members of SWG RRD is significant. All of this indicates the necessity for more active use of such positive terroir potentials of wine-growing areas in this part of Europe.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Darko Jaksic1, Vesna Maras2, Milenko Blesic3, Tatjana Jovanovic-Cvetkovic4, Klime Beleski5, Dragoslav Ivanisevic6, Ylber Kuci7, Elton Basha8 and Ivan Bradic9

1Centre for Viticulture and Oenology Niš, Belgrade, Serbia
2University of Donja Gorica, Faculty for Food Technology, Food Safety and Ecology, Podgorica, Montenegro
3University of Sarajevo, Faculty of Agriculture and Food Sciences, Sarajevo, Bosnia and Herzegovina
4University of Banja Luka, Faculty of Agriculture, Banja Luka, Bosnia and Herzegovina
5University Ss. Cyril and Methodius, Institute of Agriculture, Department for Viticulture and Oenology, Skopje, North Macedonia
6University of Novi Sad, Faculty of Agriculture, Department for Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Novi Sad, Serbia
7Department for Vineyards and Wine, MAFRD, Kosovo
8Agricultural University of Tirana, Tirana, Albania
9Centre for Viticulture and Oenology Niš, 37230 Aleksandrovac, Serbia

Contact the author

Keywords

terroir, terrain exposure, wind speed, organic production of grapes and wine, Western Balkans region

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation. To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].