terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Spatiotemporal patterns of chemical attributes in Vitis vinifera L. cv. Cabernet Sauvignon vineyards in Central California

Abstract

Spatial variability of vine productivity in winegrapes is important to characterise as both yield and quality are relevant for the production of different wine styles and products. The objectives were to understand how patterns of variability of Cabernet Sauvignon fruit composition changed over time and space, how these patterns could be characterised with indirect measurements, and how spatial patterns of the variation in fruit compositional attributes can aid in improving management. Prior to the 2017 vintage, 125 data vines were distributed across each of four vineyards in the Lodi American Viticultural Area (AVA) of California. Each data vine was sampled at commercial harvest in 2017, 2018, and 2019. Yield components and fruit composition were measured at harvest for each data vine, and maps of yield and fruit composition were produced for eight ‘objective measures of fruit quality’: total anthocyanins, polymeric tannins, quercetin glycosides, malic acid, yeast assimilable nitrogen, β-damascenone, C6 alcohols and aldehydes, and 3-isobutyl-2-methoxypyrazine. Patterns of variation in anthocyanins and phenolic compounds were found to be most stable over time. Given this relative stability, management decisions focused on fruit quality could be based on zonal descriptions of anthocyanins or phenolics to increase profitability in some vineyards. In each vineyard, dormant season pruning weights and soil cores were collected at each location, elevation and soil apparent electrical conductivity surveys were completed, and remotely sensed imagery was captured by fixed wing aircraft and two satellite platforms at major phenological stages. The data collected were used to develop relationships among biophysical data, soil, imagery, and fruit composition. The standardised and aggregated samples from four vineyards over three seasons were included in the estimation of ‘common variograms’ to assess how this technique could aid growers in producing geostatistically rigorous maps of fruit composition variability without cumbersome, single season sampling efforts.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Brent Sams1,2, Rob Bramley3, Mahyar Aboutalebi2, Luis Sanchez2, Nick Dokoozlian2, Chris Ford1 and Vinay Pagay

1School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
2Department of Winegrowing Research, E&J Gallo Winery, Modesto, California, USA
3CSIRO, Waite Campus, Urrbrae, SA, Australia

Contact the author

Keywords

vineyard variability, objective measures of fruit quality, remote sensing of vegetation, precision viticulture, Vitis vinifera (cv. Cabernet Sauvignon)

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

DEVELOPMENT OF BIOPROSPECTING TOOLS FOR OENOLOGICAL APPLICATIONS

Wine production is a complex biochemical process that involves a heterogeneous microbiota consisting of different microorganisms such as yeasts, bacteria, and filamentous fungi. Among these microorganisms, yeasts play a predominant role in the chemistry of wine, as they actively participate in alcoholic fermentation, a biochemical process that transforms the sugars in grapes into ethanol and carbon dioxide while producing additional by-products. The quality of the final product is greatly influenced by the microbiota present in the grape berry, and the demand for indigenous yeast starters adapted to specific grape must and reflecting the biodiversity of a particular region is increasing. This supports the concept that indigenous yeast strains can be associated with a “terroir”.

Enzyme treatments during pre-fermentative maceration of white winegrapes: effect on volatile organic compounds and chromatic traits

Volatile organic compounds (VOCs) are very important for the characterisation and quality of the final white wine. An oenological practice to increase the extraction of aroma compounds is the cold pre-fermentative maceration [1,2], although it may also release phenolic compounds that confer darker chromatic traits to white wines, not appreciated by consumers. This practice could be improved by the use of enzymes in order to facilitate the release of the odorous molecules. In this study, the effect of different enzyme treatments during skin contact on the chromatic characteristics and volatile composition of white musts from four winegrape varieties was evaluated.

Innovative strategies for reducing astringency in Mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

Berry carbon (δ13C) and nitrogen (δ15N) isotopic ratio reflects within farm terroir diffferences

ÂThe natural abundance of carbon stable isotopes has been reported to be related to water availability in grapevines quite widely. In the case of nitrogen, the natural abundance of its stable isotopes is mainly affected by the nature of the source of nitrogen (organic vs. inorganic) used by the plant, though the bibliography available for grapevine is very scarce.

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.