terclim by ICS banner
IVES 9 IVES Conference Series 9 VINIoT: Precision viticulture service for SMEs based on IoT sensors network

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

Abstract

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

María del Carmen Saborido Díaz1, María Dolores Loureiro Rodríguez1, Rocío Pena2, Julio Illade2 Tamara Rodríguez3, Javier José Cancela Barrio4, Beatriz Castiñeiras1 and Emilia Díaz Losada1

1Axencia Galega da Calidade Alimentaria (Agacal) – EVEGA, Leiro, Ourense, Spain
2Centro Tenológico AIMEN, Porriño, Pontevedra, Spain
3FEUGA-Fundación Empresa-Universidad Gallega, Santiago de Compostela, A Coruña, Spain
4USC – Universidade de Santiago de Compostela, Lugo, Spain

Contact the author

Keywords

vineyard monitoring, vineyard sensors, multispectral images, environmental impact, IoT design

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about the impact of type of winemaking vessel on the chemical composition and sensory attributes of Sauvignon blanc wines. This presentation is based on an original article accessible for free on IVES Technical Reviews.

Study of the Interactions between High Molecular Weight Salivary Proteins and Red Wine Flavanols.

Astringency has been defined by the American Society for Testing Materials as “the complex of sensations due to shrinking, drawing or puckering of the epithelium as a result of exposure to substances such as alums or tannins”. Regarding the importance of astringency in wine consumer acceptance, elucidating the molecular mechanisms underpinning this complex sensation represents an important goal for scientists. Although different mechanisms have been described (Gibbins & Carpenter, 2013), the salivary protein precipitation is still the most accepted theory. According to this, wine astringency perceived in the oral cavity is originally attributed to the interaction and subsequence precipitation of salivary proteins by wine tannins –mainly flavanols–.

Les terroirs viticoles ont une histoire

The historian starts from a scientific, rigorous and recent definition of the wine-growing region. “A viticultural terroir is made up of several homogeneous units: geological and pedological elements (texture,
grain size, thickness, mineralogical nature, chemical components), geomorphological (altitude, slope, exposure), climatological (rainfall, temperature, insolation)”. Absent from this definition, the man is fortunately reintroduced a little further. By associating viticulture and winemaking, it forms a “couple” with the terroir and this couple.

Can the use of rootstocks enhance terroir?

Rootstocks are an essential l management tool for diverse viticultural challenges. However, studies that combine sensory evaluation and compositional analysis of berries and wine, to determine whether the use of a particular rootstock in a terroir can influence wine quality are sparse.

Training vineyards resilience to environmental variations by managing vine water use

The challenges of the century for viticulture relate to coping with climate change and the loss of biodiversity in a downturning socio-economic context. Now more than ever, the vine and wine industry needs to be resilient to maintain and ensure a future for its heritage. An innovation of capital importance, in line with recently published research, deals with developing new methods of training our inherited and newly planted vineyards to better withstand environmental variations such as drought and heatwaves but also unevenly distributed rains and temperatures.