terclim by ICS banner
IVES 9 IVES Conference Series 9 Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

Soil quality in Beaujolais vineyard. Importance of pedology and cultural practices

Abstract

A pedological study was carried out from 2009 to 2017 in Beaujolais vineyard, to improve physical and chemical knowledge of soils. It was completed in 2016 and 2017 by the current study, dealing with microbial aspects, in order to build a reference frame for improved advice in soil management. Microbial biomass was measured on representative plots of the six most common soil types identified in Beaujolais and, for each soil type, on plots with different levels of the main impacting parameters: total organic carbon, pH, cation exchange capacity, extractable copper. A total of 59 soil samples were collected. Confirming the results of various trials carried out in Beaujolais over the past 20 years, the results of the present study showed that the soils were still alive, but exhibited a large variability of biological parameters, which appeared dependant on both pedological and anthropic factors. Therefore, a good interpretation of biological parameters and advice for vine growers must rely on a pedologically-based referential with differentiated main driving factors. For example, the control of pH is of primary importance in granitic soils and in no way organic matter addition can improve soil quality if pH is too low. Conversely, in calcareous soils, biological parameters are more directly affected by direct or indirect (cover crops for example) inputs of organic matter. The use of biological parameters, such as microbial biomass, is of great potential value to improve advice on agro-viticultural practices (soil management, fertilization, liming, etc.), basis of a sustainable wine production on fragile soils.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Jean-Yves Cahurel1, Bertrand Chatelet1,2, Rachida Nouaïm3, Rémi Chaussod3, Isabelle Letessier4, Nicolas Besset5 and Pascal Mathieu6

1Institut Français de la Vigne et du Vin, Villefranche-sur-Saône, France 
2Sicarex Beaujolais, Villefranche-sur-Saône, France
3SEMSE, Vievigne, France
4Sigales, Saint Martin d’Uriage, France
5Chambre d’Agriculture du Rhône, Villefranche-sur-Saône, France
6CESAR, Ceyzériat, France

Contact the author

Keywords

cultural practices, biological parameters, pedology, soil

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Partial dealcoholisation of red wine by reverse osmosis-evaporative perstraction: impact on wine composition

Around the world, the alcohol content of wine has been steadily increasing; partly as a consequence of climate change, but also due to improvements in viticultural management practices and winemaking techniques [1,2]. Concurrently, market demand for wines with lower alcohol levels has increased as consumers seek to reduce alcohol intake for social and/or health reasons [3]. As such, there is increasing demand for both innovative methods that allow winemakers to produce ‘reduced alcohol wines’ (RAW) and a better understanding of the impact of such methods on the composition of RAW. This study therefore aimed to investigate compositional changes in two red wines resulting from partial alcohol removal following treatment by one such method, involving a combination of reverse osmosis and evaporative perstraction (RO-EP).

Wine lees: characterization and valorization by kombucha fermentation

Winemaking generates various types of residues (vine shoots, stalks, pomace, wine lees and filtration cakes) which can have a notable environmental and economic impact. Wine by-products are rich in bioactive compounds and therefore their valorization can be beneficial on different levels.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).