terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

Abstract

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Elena Baraza1, Islem Hemida2 and Josefina Bota1

1Research group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA), Palma, Spain
2CHU research center of Quebec-Laval University, Infectious and Immune Diseases, Quebec, Canada

Contact the author

Keywords

mycorrhiza, glomus, soil microbial profile, photosynthesis, Vitis vinifera

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Les sols du cru de Bonnezeaux, Thouarcé, Anjou, France

Le cru de Bonnezeaux est une des appellations prestigieuses des vins liquoreux et moelleux des Coteaux du Layon et sa réputation est ancienne. L’INAO a effectué sa délimitation en 1953. Le vignoble est situé au nord de la ville de Thouarcé et au sud du village de Bonnezeaux, le long du versant rive droite du Layon, exposé au sud-ouest. La superficie du vignoble est de 156 ha.

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.