terclim by ICS banner
IVES 9 IVES Conference Series 9 Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

Abstract

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Elena Baraza1, Islem Hemida2 and Josefina Bota1

1Research group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) – Agro-Environmental and Water Economics Institute (INAGEA), Palma, Spain
2CHU research center of Quebec-Laval University, Infectious and Immune Diseases, Quebec, Canada

Contact the author

Keywords

mycorrhiza, glomus, soil microbial profile, photosynthesis, Vitis vinifera

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Spatio-temporal analysis of grapevine water behaviour in hillslope vineyards. the example of corton hill, Burgundy

Hillslope vineyards show various and complex water dynamics between soil and plants, and in order to gain further insight into this phenomenon, 8 grapevine plots were monitored during three vintages, from 2010 to 2013, on Corton Hill, Burgundy, France.

Grapevine productivity modelling in the Portuguese Douro Region

In Portugal, and particularly in the Demarcated Region of Douro (DDR), wine production has a great tradition, producing the unique and worldwide famous Port wine as well as other remarkably good table wines. In this study the impact of projected climate change to wine production is analysed for the DDR. A statistical grapevine yield model (GYM) is developed using climate parameters as predictors.

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

The future of wine grape growing regions in europe

Recent warming trends in climatic patterns are now evident from observational studies. Nowadays, investigating the possible impacts of climate change on biological systems has a great importance in several fields of science.