terclim by ICS banner
IVES 9 IVES Conference Series 9 Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Abstract

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Laure Gontier and Mathilde Jardel

Institut Français de la Vigne et du Vin, pôle Sud-ouest, V’innopôle, Lisle sur Tarn, France

Contact the author

Keywords

soil biological quality, biodiversity, vineyard, viticultural practice, grass cover

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Exploring resilience and competitiveness of wine estates in Languedoc-Roussillon in the recent past: a multi-level perspective

The Languedoc-Roussillon wineries are facing a decline in wine yields particularly PGI yields due to many factors. Climate change is just ones, but is expected to increase in the future. There is also structurally a large heterogeneity of yield profiles among terroirs, varieties and strategies. This work investigates the link between yield, competitiveness and resilience to explore how resilient winegrowers have been in the recent past. To this end two approaches have been combined; (i) an accountancy database analysis at estate scale and (ii) municipality level competitiveness analysis. A new resilience indicator that characterizes the capacity of an estate to absorb yield variation is also defined. The FADN database between 2000 and 2018 of ex-Languedoc-Roussillon (France) and other data are used to analyse the current situation and the past evolution of competitiveness and resilience by type of estate (type of farm: PGI and/or PDO & type of commercialization: bulk and/or bottles). The net margin, which defines competitiveness, is not correlated to yield for all types but depends on the type of commercialization and the level of specialisation. The resilience indicator shows that the net margin of estates specialized in PGI is particularly sensitive to yield declines. We also show that price evolutions seem to compensate the effect of yield losses for the majority of types. Municipality scale analysis shows the links between local pedoclimate, yield, commercialization strategies and price. Overlapping a PDO with a PGI does not always increase a municipality’s PGI competitiveness. It is difficult to make links between causes and effects due to the complexity of the wine production system. Production diversification may be a solution. Resorting to the two level of analysis helps resolving the data gap that is necessary to explore the links between yield and economic performance of the wine estates in the long term.

Rootstock differences in soil-water uptake during drying-wetting cycles imaged with 3d electrical resistivity tomography

Limited knowledge has been acquired on grapevine roots and rhizosphere processes because of harder access when compared to aerial parts. There is need for new methods to study root behavior in undisturbed field conditions, and relate these effects on canopy and yield. The aim of this multidisciplinary study was to image and quantify spatial-temporal differences in soil-water uptake by genetically different rootstocks and to assess the response of the canopy during drought and rewetting.

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.

Entre ce que les consommateurs disent, ce qu’ils apprécient et ce qu’ils achètent… où se situent les vins de chasselas ?

Originaire du bassin lémanique, le chasselas est l’emblème de la viticulture suisse. Pour autant, les surfaces de chasselas n’ont cessé de diminuer, passant de 6’585 hectares en 1986 à près de 3’600 aujourd’hui, reflet d’une baisse de consommation. Une récente étude a cherché à comprendre les raisons de ce désintérêt. Réalisée dans