terclim by ICS banner
IVES 9 IVES Conference Series 9 Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Abstract

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Vincent Lailheugue, Romain Darriaut, Ulysse Tuquoi, Tania Marzari, Joseph Tran, Elisa Marguerit and Virginie Lauvergeat

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

bacteria microbiome, fungi microbiome, archaea microbiome, arbuscular mycorrhizal fungi, rhizosphere, endorhizosphere, grapevine rootstock, grapevine scion

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influenza di alcuni aspetti ambientali sul contenuto di stilbeni nel vino nell’area della DOC “Sangiovese di Romagna” (Italia)

The ambition of the zonation of the Doc “Sangiovese di Romagna” is described as 25 siti sperimentali, aventi diversa origine geologica, in cui è stato individuato un vigneto omogeneo per la determinazione dei principali parametri viticoli ed enologici. In seguito è stato analizzato il contentto di stilbeni nei vini al fine di indepth il legame con le charatteristiche geopedologiche. The studio describes the positive relationship between the altitude and the content of the trans -piceide nelle province di Forlì and Ravenna and of the trans -resveratrolo a Ravenna. I suoli con maggiore calcare attivo hanno fornito vini più ricchi in stilbeni.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.