GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Abstract

Context and purpose of the study ‐ Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others. These are highly dependent on the weather conditions during the growing season and management strategies. Therefore, it is important to develop predictive models using machine learning (ML) algorithms to assess and predict wine quality traits before the winemaking process.

Material and methods ‐ Samples in duplicates of Pinot Noir wines from vertical vintages (2008 to 2013) of the same winery located in Macedon Ranges, Victoria, Australia were used to assess different chemical analytics such as i) aromas using gas chromatography – mass spectrometry, ii) color density, iii) color hue, iv) degree of red pigmentation, v) total red pigments, vi) total phenolics, vii) pH, viii) total acidity (TA), and ix) alcohol content. Data from weather conditions from the specific vintages were obtained both from the bureau of meteorology (BoM) and the Australian Wine Availability Project (AWAP) climate databases. Such data consisted of: i) solar exposure from veraison to harvest (V‐H), ii) solar exposure from September to harvest (S‐H), iii) maximum January solar exposure, iv) degree days from S‐H, v) maximum January evaporation, vi) mean maximum temperature from veraison to harvest, vii) mean minimum temperature from V‐H, viii) water balance from S‐H, ix) solar exposure from V‐H, x) degree hour accumulation with base 25 – 30 °C, xi) degree hour accumulation with base 25 °C, xii) degree hour accumulation with base 30 °C, xiii) degree hour accumulation with base 35 °C, and xiv) total cumulative degree days accumulation with base 10 °C. All data were used to develop two machine learning (ML) regression models using Matlab® R2018b. The best models obtained were using artificial neural networks (ANN) with the Levenberg‐Marquardt algorithm with 5 neurons for Model 1 and 9 neurons for Model 2. Model 1 was developed using the 14 parameters from the weather data as inputs to predict 21 aromas found in the wines from the six different vinatges. Model 2 was developed using the same 14 parameters from weather data and the eight chemical parameters as targets and outputs.

Results ‐ Both models obtained presented very high accuracy to predict wine quality trait parameters. Model 1 had an overall correlation coefficient R = 0.99 with a high performance based on the mean squared error (MSE = 0.01), while Model 2 had an overall correlation coefficient R = 0.98 with a high performance (MSE = 0.03). These models would aid in the prediction of wine quality traits before its production, which would give anticipated information to winemakers about the product they would obtain to make early decisions on wine style variations.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Sigfredo FUENTES, Claudia GONZALEZ VIEJO, Xiaoyi WANG, Damir D. TORRICO

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia

Contact the author

Keywords

wine quality, machine learning, weather, aromas

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Impact of closures on aroma of godello and torrontés white wines post-bottling

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content.

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S.

Geological, mineralogical and geochemical influences on the cultivation of vines

Aims: The aims of this study are to determine the influences of the local geology, mineralogy and geochemistry of surroundings, substrate and soil on the cultivation of vines, these as an additional factor of specificity and locality in the production of wine and definition of terroir, as well as for the discrimination of local variance of substrate and soil properties for the strategic management of cultivation plots and/or the evaluation of new cultivation regions, necessary within a scope of global climate change.

Territoire, terroir et marché du vin à la production

Work aimed at understanding the relationship between a terroir, in the agronomic sense, and the physico-chemical characteristics of grapes or wine are numerous today, as evidenced by the program of this symposium. But for an economist, the central question remains to know how the terroir can intervene in the construction of the economic value of wine and in the differentiation of its prices. Is the terroir effect recognized by the end consumer or is it only an internal adjustment variable in the production systems? Through which indicators can this terroir effect be managed by the various operators in the sector? In the end, isn’t it better to invoke a “territorial effect” that the actors can build, and of which the terroir would be one of the possible components?