GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Abstract

Context and purpose of the study ‐ Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others. These are highly dependent on the weather conditions during the growing season and management strategies. Therefore, it is important to develop predictive models using machine learning (ML) algorithms to assess and predict wine quality traits before the winemaking process.

Material and methods ‐ Samples in duplicates of Pinot Noir wines from vertical vintages (2008 to 2013) of the same winery located in Macedon Ranges, Victoria, Australia were used to assess different chemical analytics such as i) aromas using gas chromatography – mass spectrometry, ii) color density, iii) color hue, iv) degree of red pigmentation, v) total red pigments, vi) total phenolics, vii) pH, viii) total acidity (TA), and ix) alcohol content. Data from weather conditions from the specific vintages were obtained both from the bureau of meteorology (BoM) and the Australian Wine Availability Project (AWAP) climate databases. Such data consisted of: i) solar exposure from veraison to harvest (V‐H), ii) solar exposure from September to harvest (S‐H), iii) maximum January solar exposure, iv) degree days from S‐H, v) maximum January evaporation, vi) mean maximum temperature from veraison to harvest, vii) mean minimum temperature from V‐H, viii) water balance from S‐H, ix) solar exposure from V‐H, x) degree hour accumulation with base 25 – 30 °C, xi) degree hour accumulation with base 25 °C, xii) degree hour accumulation with base 30 °C, xiii) degree hour accumulation with base 35 °C, and xiv) total cumulative degree days accumulation with base 10 °C. All data were used to develop two machine learning (ML) regression models using Matlab® R2018b. The best models obtained were using artificial neural networks (ANN) with the Levenberg‐Marquardt algorithm with 5 neurons for Model 1 and 9 neurons for Model 2. Model 1 was developed using the 14 parameters from the weather data as inputs to predict 21 aromas found in the wines from the six different vinatges. Model 2 was developed using the same 14 parameters from weather data and the eight chemical parameters as targets and outputs.

Results ‐ Both models obtained presented very high accuracy to predict wine quality trait parameters. Model 1 had an overall correlation coefficient R = 0.99 with a high performance based on the mean squared error (MSE = 0.01), while Model 2 had an overall correlation coefficient R = 0.98 with a high performance (MSE = 0.03). These models would aid in the prediction of wine quality traits before its production, which would give anticipated information to winemakers about the product they would obtain to make early decisions on wine style variations.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Sigfredo FUENTES, Claudia GONZALEZ VIEJO, Xiaoyi WANG, Damir D. TORRICO

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, VIC 3010, Australia

Contact the author

Keywords

wine quality, machine learning, weather, aromas

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Rapid measurement of phenolic quality as a useful tool for viticultural zoning

Un des principaux objectifs du zonage viticole est l’individuation des zones plus indiquées à la production de vins de haute qualité en relation aux cépages. Ceperrlant depuis beaucqup d’années, entre les paramètres de qualité du raisin, on n’a pas considéré les substances phénoliques par effet de l!l difficulté d’analyse en temps rapides.

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Impact of geographical location on the phenolic profile of minority varieties grown in Spain. II: red grapevines

Because terroir and cultivar are drivers of wine quality, is essential to investigate theirs effects on polyphenolic profile before promoting the implantation of a red minority variety in a specific area. This work, included in MINORVIN project, focuses in the polyphenolic profile of 7 red grapevines minority varieties of Vitis vinifera L. (Morate, Sanguina, Santafe, Terriza Tinta Jeromo Tortozona Tinta) and Tempranillo) from six typical viticulture Spanish areas: Aragón (A1), Cataluña (A2), Castilla la Mancha (A3), Castilla –León (A4), Madrid (A5) and Navarra (A6) of 2020 season. Polyphenolic substances were extracted from grapes. 35 compounds were identified and quantified (mg subtance/kg fresh berry) by HPLC and grouped in anthocyanins (ANT) flavanols (FLAVA), flavonols (FLAVO), hydroxycinnamic (AH), benzoic (BA) acids and stilbenes (ST). Antioxidant activity (AA, mmol TE /g fresh berry) was determined by DPPH method. The results were submitted to a two-way ANOVA to investigate the influence of variety, area and their interaction for each polyphenolic family and cluster analysis was used to construct hierarchical dendrograms, searching the natural groupings among the samples. Sanguina (A3) had the most of total polyphenols while Tempranillo (A5) those of ANT. Sanguina (A2) and (A3) reached the highest values of FLAVO, FLAVA and AA. These two last samples had also the maximum of AA. The effect cultivar and area were significant for all polyphenolic families analyzed. A high variability due to variety (>50%) was observed in FLAVA and the maximum value of variability due to growing area was detected in AA (86.41%), ANT and FLAVO (51%); the interaction variety*zone was significant only for ANT, FLAVO, EST and AA. Finally, dendrograms presented five cluster: i) Sanguina (A2); ii) Sanguina (A3); iii) Tempranillo (A5); iv) Tempranillo (A3); Terriza (A3,A5), Morate (A5,A6); v) Santafé (A1,A6); Tortozona tinta (A1,A3,A6); Tinta Jeromo (A3,A4).

Aroma chemical markers of Durello wines from different vintages and origins: a case study

Wines expressing sensory characters that are representative of their varietal and geographical origins are highly sought after in today’s market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved. This study investigated aroma chemical and sensory diversity of Durello DOC white

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.