terclim by ICS banner
IVES 9 IVES Conference Series 9 Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Abstract

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Audrey Naulleau1, Laure Hossard2, Laurent Prévot3, Christian Gary1

1ABSys, Univ Montpellier, INRAE, CIRAD, Institut Agro, Ciheam-IAMM, Montpellier, France
2Innovation, Univ Montpellier, INRAE, CIRAD, Institut Agro, Montpellier, France
3LISAH, Univ Montpellier, INRAE, IRD, Institut Agro, Montpellier, France

Contact the author

Keywords

climate change, grapevine model, landscape, participatory design, water-saving practices

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

Impact of changes in pruning practices on vine growth and yield

A gradual decline in vineyards has been observed over the past twenty years worldwide. This might be explained by the climate change, practices change or the increase of dieback diseases. To increase the longevity of vines, we studied the impact of different pruning strategies in four adult and four young vineyards located in France and Spain. In France, vineyards were planted with Cabernet franc on 3309C while Spanish trials were planted with Tempranillo grafted on 110R. Vegetative expression, yield, quality of berries and wood vessels conductivity were measured. The distribution of vegetative expression, yield and berry composition between primary and secondary vegetation were quantified. Finally, tomography was used to evaluate the implication of the treatments on sap flows.
First results show that i) the respectful pruning leads to an increase of 30 to 50% more secondary shoots than the aggressive pruning in France and between 15 and 20% in Spain, ii) there is no major effect on the yield over the first two years following the implementation of the new pruning practices, although the proportion of clusters from suckers is higher on the respectful pruning method. On young vines, the development of the trunk according to a respectful pruning leads to a loss of harvest 2 years after planting. This is due to the removal, on the future trunk, of the green suckers which carrying bunches. This operation carried out in spring rather than during winter pruning, would promote a better leaf / fruit balance when the plant comes into production, and could lead to better hydraulic conduction in the vessels of the trunk. Maintaining these trials for several years will provide more robust data to assess the impact of these practices on the vines over the long term.

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Application of cyclic voltammetry to the classification of enological tannins in relationship to oxygen consumption rate and botanical origin 

Enological tannins are a diversified group of winemaking products that vary in several aspects such as chemical composition, botanical origin, and production method. In consideration of their richness in phenolic compounds, one of their main application in vinification is related to their antioxidant capacity, in particular their ability to consume oxygen during red wine maturation.

VviSOC1a and VviAG1 act antagonistically in the regulation of flower formation

The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) is a key floral activator that coordinates external and internal stimuli to ensure timely flowering. During early stages of flower formation, SOC1 represses floral organ identity genes such as AGAMOUS (AG) to prevent premature organ differentiation. In addition to floral organ specification, AG has been shown to regulate fleshy fruit expansion and ripening and, as such, is an important contributor to fruit quality traits. Currently, little is known about the function and gene regulatory network of the grapevine homologs VviSOC1a and VviAG1. As such, the aim of this study was to functionally characterise both genes by overexpressing them in tomato and performing phenotypic and gene expression studies.