terclim by ICS banner
IVES 9 IVES Conference Series 9 Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

Abstract

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under  Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Eric Serrano1, Paul Katgerman1, Marc Gelly2 and Thierry Dufourcq3

1IFV Sud-ouest, V’Innopole, Peyrole, France
2Ag-Irrig, Aubussargues, France
3IFV Sud-ouest, Caussens, France

Contact the author

Keywords

aerial drip irrigation, subsurface drip irrigation, water saving, wet bulb

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.

The FEM grapevine crossbreeding program for resistance to the main ampelopathies: towards climate-resilient varieties

The technique of crossing, whether free or controlled, has always been a source of variability allowing the selection of new varieties with improved fitness.

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue

Aroma composition of mono-varietal white wines for the production of Custoza

AIM: The appellation “Bianco di Custoza” or “Custoza”, born in 1971, is one of the oldest white wines Protected Designation of Origin in Italy.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.