terclim by ICS banner
IVES 9 IVES Conference Series 9 Amino nitrogen content in grapes: the impact of crop limitation

Amino nitrogen content in grapes: the impact of crop limitation

Abstract

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Thibaut Verdenal1, Ágnes Dienes-Nagy1, Vivian Zufferey1, Jean-Laurent Spring1, Jorge E. Spangenberg2, Olivier Viret3and Cornelis van Leeuwen4

1Agroscope Institute, Pully, Switzerland
2Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
3Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires, Morges, Switzerland
4EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

crop thinning, nitrogen use efficiency, yeast assimilable nitrogen, amino acids, partitioning, reserve mobilization

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.

Guyot or pergola for dehydration of Rondinella grape

Pergola veronese is the most important vine training system in Valpolicella area but Guyot in the last decades is diffusing. Rondinella is one of the three most important varieties

Applications of Infrared Spectroscopy from laboratory to industry

The grape and wine industries have long sought rapid, reliable and cost-effective methods to screen and monitor all the stages of the winemaking process, which include grape ripening in the vineyard, harvest and grape reception at the weighbridge, the fermentation stage and the bottling of the final product.

Analysis of vineyard soil after mulching with municipal solid waste (MSW)-compost

The use of compost as amendment in agriculture is a well-established practice, strongly recommended for numerous benefits.