terclim by ICS banner
IVES 9 IVES Conference Series 9 The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Abstract

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Fernando Alves1, Joana Valente1, Pedro Leal da Costa1, Artur Moreira1, Ricardo Silva1, Frank S. Rogerson1 and Charles Symington1

 

Symington Family Estates, Vinhos S.A. – Vila Nova de Gaia, Portugal

 

Contact the author

Keywords

Climate, Soil, Deficit Irrigation, Touriga Nacional, Yield, Quality, Douro Region

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Free and bound terpene profile of recovered minority white grape varieties by GC × GC-TOFMS

Climate change presents a significant challenge for actual viticulture. In this context, recovering minority grape varieties can be a crucial strategy to ensure resilience, particularly those capable of maintaining quality and aromatic complexity under water stress.

Late leaf removal does not consistently delay ripeningin semillon in Australia

Context and purpose of the study ‐ An advancement of grapevine phenological development has been observed worldwide in the last two decades. In South Australia this phenomenon is even more accentuated since grapevine is often grown in a hot climate. The main consequences are earlier harvests at higher sugar levels which also result in more alcoholic wines. These are deemed undesirable for the Australian wine industry with consumer preferences shifting towards lower alcohol wines. Vineyard practices can be implemented to control and delay ripening. Amongst them, apical late leaf removal has been successfully applied in Europe to delay ripening by up to two weeks in Sangiovese, Aglianico and Riesling. In those studies, no negative effects were observed on grape colour, phenolics and on the carbohydrate storage capacity of the vines. To date, this technique has not been studied in Australia. In this study late leaf removal, apical to the bunch zone was applied to the variety Semillon for four seasons and compared to an untreated control.

Chemical profiling and sensory analysis of wines from resistant hybrid grape cultivars vs conventional wines

Recently, there has been a shift toward sustainable wine production, according to EU policy (F2F and Green Deal), to reduce pesticide usage, improve workplace health and safety, and prevent the impacts of climate change. These trends have gained the interest of consumers and winemakers. The cultivation of disease resistant hybrid grape cultivars (DRHGC), known as ‘PIWI’ grapes can help with these objectives [1]. This study aimed to profile white and red wines produced from DRHGC in South Tyrol (Italy). Wines produced from DRHGCs were compared with conventional wines produced by the same wineries. The measured parameters were residual sugars, organic acids, alcohol content, pigments and other phenolics by LC-QqQ/MS, colorimetric indexes (CIELab); and volatile profiles (HS-SPME-GCxGC-ToF/MS [2]).

The regulation of ABA-induced anthocyanin accumulation in grape berry

Color is a key quality trait for grape berry and the producing wines. Berry color of red genotypes is mainly determined by the quantity and composition of anthocyanins accumulated in the skin and/or pulp. Both genetic and environmental factors could influence the quantity and composition of anthocyanins, while the underlying mechanisms are not fully clear. To explore the mechanisms underlying the diversity of anthocyanin accumulation in grape berry, we compared two grapevine genotypes showing distinct sensitivities to ABA-induced anthocyanin biosynthesis, where one genotype showed minor responses to exogenous ABA application while the other showed significant increase in anthocyanins after exogenous ABA application.

First identification of a glycosylated fraction involved in mushroom-off-flavor in grapes: influence of B. cinerea, powdery mildew and C. subabruptus

An organoleptic defect, called fresh mushrooms off-flavor, appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, octan-3-ol and octen-3-ol