Exploring the dynamic between yeast mannoproteins structure and wine stability
Abstract
Mannoproteins are macromolecules found on the surface of yeast cells, composed of hyperbranched polysaccharide negatively charged chains by mannosyl-phosphate groups, fixed to a protein core. During the alcoholic fermentation and aging on lees, these mannoproteins are released from the yeast cell wall and become the main yeast-sourced polysaccharide in wine. Due to their techno-functional properties, commercial preparations of mannoproteins can be used as additives to better assure tartaric and protein stability. The impact of mannoproteins on the organoleptic perception and stability of wines goes beyond since they can interact with some of the most abundant wine polyphenols. However, the comprehension of how the molecular aspects mold mannoprotein properties and the interaction mechanisms that take place is still in its early stages since a full characterization of relatively low polydisperse fractions is not systematically done and only a few research labs can perform. Mannoproteins extracted and purified from different yeast strains – torulaspora delbruecki, hanseniaspora vinae, schizosaccharomyces japonicus, saccharomyces cerevisiae, and s. Cerevisiae mutants mnn2 (non-hyperbranched polysaccharide part) and mnn4 (no mannosyl-phosphorylation) – were thoroughly characterized in terms of: protein composition; polysaccharide composition and glycosyl-linkage; global net charge; molecular size and mass distributions, as well as average molar weight and number (mw and mn) and polydispersity index (mw/mn); intrinsic viscosity ([ɳ]); conformation, etc. Among the mannoproteins from the different studied non-saccharomyces strains, the composition of one stood out with the presence of uncommon neutral and acidic sugars. Although completely formed of mannan chains, the other two non-saccharomyces sourced mannoproteins had different glycosyl-linkage compositions when compared to the s. Cerevisiae strain mannoproteins. Differences in composition between mannoproteins from saccharomyces and non-saccharomyces strains affected the molecular conformation and compactness, as well as global net charge. These mannoproteins are under investigation for their capacity to prevent protein haze. Preliminary results indicate that the studied mannoproteins reduce the increase of white wine turbidity after the heat tests applied. The deltantu factor related to the protein haze formation was more or less intense depending on the mannoprotein used.
Esplorazione della dinamica tra struttura delle mannoproteine del lievito e stabilità del vino
Le mannoproteine sono macromolecole presenti sulla superficie delle cellule di lievito, composte da catene polisaccaridiche iper-ramificate caricate negativamente da gruppi mannosil-fosfato, fissate a un cuore proteico. Durante la fermentazione alcolica e l’affinamento sulle fecce, queste mannoproteine vengono rilasciate dalla parete cellulare del lievito e diventano il principale polisaccaride del lievito nel vino. Grazie alle loro proprietà tecno-funzionali, delle preparazioni commerciali di mannoproteine possono essere utilizzate come additivi per assicurare la stabilità tartarica e proteica. L’impatto delle mannoproteine sulla percezione organolettica e sulla stabilità dei vini va oltre, dato che queste possono interagire con alcuni dei polifenoli più abbondanti del vino. Tuttavia, la comprensione di come gli aspetti molecolari forgiano le proprietà delle mannoproteine e i meccanismi di interazione che hanno luogo è ancora agli esordi, poiché una caratterizzazione completa delle frazioni relativamente poco polidisperse non viene effettuata sistematicamente e solo pochi laboratori di ricerca sono in grado di eseguirla. Mannoproteine estratte e purificate da diversi ceppi di lievito – torulaspora delbruecki, hanseniaspora vinae, schizosaccharomyces japonicus, saccharomyces cerevisiae e mutanti di s. Cerevisiae δmnn2 (parte polisaccaridica non iper-ramificata) e δmnn4 (assenza di mannosil-fosforilazione) – sono stati caratterizzati in modo approfondito in termini di: composizione proteica; composizione polisaccaridica e legami glicosilici; carica netta globale; dimensioni molecolari e distribuzioni di massa, nonché peso e numero molare medio (mw e mn) e indice di polidispersità (mw/mn); viscosità intrinseca ([ɳ]); conformazione, ecc. Tra le mannoproteine dei diversi ceppi non-saccharomyces studiati, la composizione di una si è distinta per la presenza di zuccheri neutri e acidi non comuni. Sebbene fossero completamente formate da catene di mannano, le altre due mannoproteine di origine non saccharomyces presentavano composizioni di legami glicosilici diverse rispetto alle mannoproteine del ceppo s. Cerevisiae. Le differenze di composizione tra le mannoproteine di ceppi saccharomyces e non saccharomyces influenziano la conformazione e la compattezza molecolare, oltre che la carica netta globale. Queste mannoproteine sono in fase di studio per la loro capacità di prevenire la torbidità proteica. I risultati preliminari dei test termici effettuati, indicano che le mannoproteine studiate limitano l’aumento della torbidità del vino bianco e che il fattore δntu relativo alla formazione di torbidità proteica è risultato più o meno intenso a seconda della mannoproteina utilizzata.
Exploration de la dynamique entre la structure des mannoprotéines de levure et la stabilité du vin
Les mannoprotéines sont des macromolécules présentes à la surface des cellules de levure, composées de chaînes de polysaccharides hyperbranchées chargées négativement par des groupes mannosyl-phosphate, fixées à un noyau protéique. Au cours de la fermentation alcoolique et du vieillissement sur lies, ces mannoprotéines sont libérées de la paroi cellulaire de la levure et deviennent le principal polysaccharide d’origine levurienne dans le vin. En raison de leurs propriétés techno-fonctionnelles, les préparations commerciales de mannoprotéines peuvent être utilisées comme additifs pour mieux assurer la stabilité tartrique et protéique. L’impact des mannoprotéines sur la perception organoleptique et la stabilité des vins va au-delà puisqu’elles peuvent interagir avec certains des polyphénols les plus abondants dans le vin. Cependant, la compréhension de la façon dont les aspects moléculaires façonnent les propriétés des mannoprotéines et les mécanismes d’interaction qui ont lieu n’en est qu’à ses débuts puisqu’une caractérisation complète des fractions relativement peu polydisperses n’est pas systématiquement réalisée et que seuls quelques laboratoires de recherche peuvent l’effectuer. Les mannoprotéines extraites et purifiées de différentes souches de levure – torulaspora delbruecki, hanseniaspora vinae, schizosaccharomyces japonicus, saccharomyces cerevisiae, et mutants de s. Cerevisiae mutants mnn2 (partie polysaccharide non hyperbranchée) et mnn4 (pas de mannosyl-phosphorylation) – ont été caractérisées de manière approfondie en termes de : composition protéique ; composition polysaccharidique et liaison glycosidique ; charge nette globale ; distribution de la taille moléculaire et de la masse, ainsi que le poids molaire moyen et le nombre (mw et mn) et l’indice de polydispersité (mw/mn) ; et la viscosité intrinsèque ([ɳ]) ; et la conformation, etc. Parmi les mannoprotéines des différentes souches non-saccharomyces, la composition de l’une d’entre elles se distingue par la présence des oses neutres et acides peu communs. Bien qu’entièrement formées de chaînes mannanes, les deux autres mannoprotéines d’origine non-saccharomyces présentaient des compositions de liaisons glycosidique différentes de celles des mannoprotéines de la souche s. Cerevisiae. Les différences de composition entre les mannoprotéines des souches saccharomyces et non-saccharomyces affectent la conformation moléculaire et la compacité, ainsi que la charge nette globale. Les différents types de ces mannoprotéines font l’objet d’une étude visant à déterminer leur capacité à prévenir la casse protéique. Les résultats préliminaires indiquent que les mannoprotéines étudiées limitent l’augmentation de la turbidité du vin blanc après les tests à la chaleur. Le facteur deltantu lié à la formation du trouble protéique est plus ou moins intense selon la mannoprotéine utilisée.
Issue: OIV 2024
Type: Article
Authors
¹ Institut Agro Montpellier – UMR SPO – 2 Place Pierre Viala, Montpellier, France
² Institut Agro Montpellier, Unité Mixte de Recherche Sciences pour l’Oenologie – 2 Place Pierre Viala, Montpellier, France
³ Lallemand SAS – 19 Rue des Briquetiers, BP 59, Blagnac, France
⁴ Oenobrands – Parc Scientifique Agropolis, 2196 Boulevard de la Lironde, Montferrier-sur-Lez, France
⁵ INRAE, Unité Mixte de Recherche Sciences pour l’Oenologie – 2 Place Pierre Viala, Montpellier, France