terclim by ICS banner
IVES 9 IVES Conference Series 9 Climate change projections to support the transition to climate-smart viticulture

Climate change projections to support the transition to climate-smart viticulture

Abstract

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

João A. Santos1,2

1Centre for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal
2Physics Department, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal

Contact the author

Keywords

climate change, projections, adaptation, risk reduction, viticulture

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Direct SPME GC-MS determination of volatile congeners in wines without sample pre-treatment

In this work “ethanol as an internal standard” method was used for the SPME GC-MS quantification of volatile congeners in wines. Our aim was to develop a fast and simple method of wine analysis without additional procedures, reagents etc. A row of standard solutions containing some frequently found congeners in wine was prepared gravimetrically. Suggested method was compared with traditional internal standard method.

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Innovative red winemaking strategy: biosurfactant-assisted extraction and stabilization of phenolic compounds

The color is the first attribute perceived by consumers and a major factor determining the quality of red wines. This depends mainly on the content of grape anthocyanins and their extraction into the juice/wine during winemaking. Furthermore, these compounds can undergo reactions that influence the chemical and sensory characteristics of the wine. Monomeric forms are prone to oxidation and adsorption on solid parts.

Terroir in Tasting: A sensory approach for marketing fine Australian wines of provenance as memorable experiences

Aims: Establishing an image of fine wine through the Geographical Indication (GI) system is of interest to the Australian wine sector. Beyond provenance, the sensory experience of fine wine is often linked to consumption with appropriate foods. For this purpose, studies were undertaken to understand consumer perceptions of what

Microbial life in the grapevine: what can we expect from the leaf microbiome?

The above-ground parts of plants, which constitute the phyllosphere, have long been considered devoid of bacteria and fungi, at least in their internal tissues and microbial presence there was long considered a sign of disease. However, recent studies have shown that plants harbour complex bacterial communities, the so-called “microbiome”[1]. We are only beginning to unravel the origin of these bacterial plant inhabitants, their community structure and their roles, which in analogy to the gut microbiome, are likely to be of essential nature. Among their multifaceted metabolic possibilities, bacteria have been recently demonstrated to emit a wide range of volatile organic compounds (VOCs), which can greatly impact the growth and development of both the plant and its disease-causing agents.