terclim by ICS banner
IVES 9 IVES Conference Series 9 Modeling island and coastal vineyards potential in the context of climate change

Modeling island and coastal vineyards potential in the context of climate change

Abstract

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Jeanne Thibault1, Hervé Quénol2 and Cyril Tissot3

1,3UMR 6554 LETG Brest, Institut Universitaire Européen de la Mer, Plouzané, France
2UMR 6554 LETG Rennes, Université Rennes 2, Rennes, France

Contact the author

Keywords

climate change, islands, modeling, optimization, vineyards

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Impact of soil-applied and foliar-applied nitrogen on grape and wine composition

Foliar application of urea may be an efficient way to alter grape and wine composition without increasing vine vigor. However, we know little about the impact of this practice on phenolic compounds and yeast assimilable nitrogen (YAN). Adequate YAN is required for an efficient and complete fermentation, while phenolics are particularly important for the sensory profile of red wines. The goal of this study is to test the impact of foliar urea application at veraison, compared to the traditional soil-applied nitrogen fertilization early in the season, on Syrah berry and wine composition in field conditions.

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves.

Monitoring of mannoprotein cessions during wine aging on lees: development of a simple enzymatic method

Mannoproteins are polysaccharides released by Saccharomyces cerevisiae yeast during alcoholic fermentation or by enzymatic action during aging on yeast lees (autolysis). These molecules play a major role in wine characteristics processing, namely, in the tartaric stabilization and protein haze prevention; moreover, they improve color stability and reduce astringency.