terclim by ICS banner
IVES 9 IVES Conference Series 9 The interplay between grape ripening and weather anomalies – A modeling exercise

The interplay between grape ripening and weather anomalies – A modeling exercise

Abstract

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Franco Meggio

DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy

Contact the author

Keywords

temperature, rainfall, sugar, acidity, climate change

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

The sensory features of the landscapes

When someone watches a hilly landscape, the image beauty creates emotions and frames of mind not easily forgettable, but sometimes man’s intervention by means of soil movement and reduction of the natural biodiversity can significantly modify the landscape and consequently the above-mentioned emotions. One speculates if sensory appreciation of a wine may be strongly affected by psychological factor: landscape beauty.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Plant regeneration via somatic embryogenesis and preliminary trials for the application of the DNA-free genome editing in grapevine cv. Corvina veronese

Grapevine (Vitis spp.) is a globally significant fruit crop, and enhancing its agronomic and oenological traits is crucial to meet changing agricultural conditions and consumer demands. Conventional breeding has played a key role in domesticating grapevine varieties, but it is a time-consuming process to develop new cultivars with desirable traits for cultivation.
New plant breeding techniques (NpBTs) offer a potential revolution in grapevine cultivation, and genome editing has shown promise for targeted mutagenesis. The success of these biotechnological approaches relies on efficient in vitro regeneration protocols, particularly through somatic embryogenesis (SE).

Dual mode of action of grape cane extracts against Botrytis cinerea

Crude extracts of Vitis vinifera canes represent a natural source of stilbene compounds with well characterized antifungals properties. In our trials, exogenous application of a stilbene extract (SE) obtained from grape canes on grapevine leaves reduces the necrotic lesions caused by Botrytis cinerea