terclim by ICS banner
IVES 9 IVES Conference Series 9 The interplay between grape ripening and weather anomalies – A modeling exercise

The interplay between grape ripening and weather anomalies – A modeling exercise

Abstract

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Franco Meggio

DAFNAE, Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy

Contact the author

Keywords

temperature, rainfall, sugar, acidity, climate change

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a Southwestern France vineyard

The soil plays a pivotal role in the agroecological transition processes, due to its numerous implications in production support, water regulation, air and nutrient supply, and its function of reservoir for the major part of planet biodiversity. Therefore, soil quality and adequate soil management are key levers for an ecologically and economically sustainable viticulture. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it gathered winegrowers from the south-west of France (Gascony), scientists, advisors and technicians, around a project focused on the biological functioning of viticultural soil and the design of better-adapted technical paths for soil protection.

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).

Phenolic compounds present in natural haze protein of Sauvignon white wine

The aim of this work was the identification and quantification of polyphenols present in natural precipitate of a Sauvignon wine. Phenol analysis in wine precipitate was based on acid hydrolysis, CG- MS after derivatization, and LC-MS.

Contribution of Piperitone to the mint nuances perceived in the aging bouquet of red Bordeaux wines

During the tasting of a fine, old wine, the aromas generated in the glass are intertwined in an intimate, complex manner, expressing the fragrance of the aging bouquet. This aging bouquet, which develops during bottle storage through a complex transformation process, may result in a broad palette of nuances. Among these, undergrowth, truffle, toasted, spicy, licorice, fresh red- and black-berry fruit and mint descriptors were recently identified as features of its olfactory representation for red Bordeaux wines. Although a targeted chemical approach focusing on volatile sulfur compounds revealed the role played by dimethyl sulfide, 2-furanmethanethiol, and 3-sulfanylhexanol as molecular markers of the typicality of the wine aging bouquet of red Bordeaux wines, its chemical transcription has only partially been elucidated.

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,