terclim by ICS banner
IVES 9 IVES Conference Series 9 Rapid damage assessment and grapevine recovery after fire

Rapid damage assessment and grapevine recovery after fire

Abstract

There is increasing scientific consensus that climate change is the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cassandra Collins1,2, Annette James1, Jingyun Ouyang3, Andy Clarke3, Sebastien Wongand Michaela Ritchie3

1School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, Australia
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Adelaide, Australia
3Consilium Technology Pty Ltd, Adelaide, Australia

Contact the author

Keywords

scorching, satellite imagery, productivity, vineyard recovery, fertility

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Valpolicella chemical pattern of aroma ‘terroir’ evolution during aging

Valpolicella is an Italian region famous for the production of high quality red wines. Wines produced in its different sub-regions are believed to be aromatically different, as confirmed by recent studies in our laboratory. Aging is a very common practice in Valpolicella and it is required by the appellation regulation for periods up to four years. The aim of this study was to investigate the evolution, during aging, of volatile chemical composition of Valpolicella wines obtained from grapes harvested in different sub-regions during different vintages.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Methodology for soil study and zoning

La caractérisation des sols en vue d’une étude de terroirs viticoles peut être réalisée à différents niveaux de complexité, suivant le nombre de variables pris en compte et suivant le fait que celles-ci sont spatialisées ou non