terclim by ICS banner
IVES 9 IVES Conference Series 9 Rapid damage assessment and grapevine recovery after fire

Rapid damage assessment and grapevine recovery after fire

Abstract

There is increasing scientific consensus that climate change is the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cassandra Collins1,2, Annette James1, Jingyun Ouyang3, Andy Clarke3, Sebastien Wongand Michaela Ritchie3

1School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, Australia
2ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Adelaide, Australia
3Consilium Technology Pty Ltd, Adelaide, Australia

Contact the author

Keywords

scorching, satellite imagery, productivity, vineyard recovery, fertility

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

The legal concept of “cultural heritage” to refurbish the wine sector’s priorities

Following the latest oiv global report (april 26, 2024), the prevailing perception of wine consumption finds itself undergoing one of its most challenging adjustments. It’s plausible to anticipate a shift in the scope of pdo wines towards more human-centered products (wells and stiefel, 2019), necessitating the entire sector to adapt strategies to public interest patterns (touzeau, 2010: 17-31). Previously, a dominant notion of cultural property underscored the value of wine regions; the primary interest revolved around estate owners and retailers, along with vigneron tales.

Development of a new method for detecting acetic acid bacteria in wine

The presence of acetic acid bacteria in wine can lead to the appearance of acetic acid at concentrations above the perception threshold, causing the wine rejection by the consumer. During the winemaking process, avoiding the presence of acetic acid bacteria is very difficult, as there is always a residual population accompanying the wine[1], and the problem arises with the significant development of these microorganisms that metabolizes large amounts of acetic acid.
The concern of wineries to control the presence of acetic acid bacteria in wines during their conservation is due to the absence of simple and effective analyses that allow the detection of these microorganisms in the initial stages.