terclim by ICS banner
IVES 9 IVES Conference Series 9 Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Abstract

An increasing plant dieback has been observed in vineyards these past two decades, that has been partly attributed to the incidence of grapevine trunk diseases. Among them, esca and Botryosphaeria dieback are increasingly affecting grapevine mortality and yield loss, but little is known about the relationships between leaf symptoms and climate, hampering our ability to predict future trends in grapevine dieback. Our aim was to test short-term relationships between weather conditions and leaf symptom incidence in southern France vineyards. We harmonized and compiled summer surveys leaf symptoms of grapevine trunk disease in a database gathering 50 vineyards. Surveys were conducted on a weekly to bimonthly basis during the period 2003-2021, leading to 69 site-by-year plots. Vineyards were characterised by different ages (8 to 37 years old plants), grapevine varieties (n = 11), cultural practices, soil and climate conditions. Climate data were compiled from Safran daily data of Météo-France and averaged on different time steps. For each plot, we derived weekly rates of leaf symptom incidence using non-parametric Loess models. To account for contrasting conditions among vineyards, we scaled both leaf symptom and climate data, focusing on variations relative to plot. Statistical models show highly significant relationships between local leaf symptom trends and climatic conditions on a weekly to monthly time step. As expected, the higher the evaporative demand (temperature and humidity) the higher the incidence of new weekly cases. However, an increase in drought conditions and wind speed inhibited the incidence of leaf symptoms. Our results suggest that fungi associated with grapevine trunk diseases benefit from warm conditions but are inhibited by dry conditions that both are expected to increase in the next future. Our findings provide important insights to better understand plant-climate-diseases relationships in the field and anticipate trends for the next decades.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Thibaut Fréjaville1, Lucia Guérin-Dubrana1, Philippe Larignon2, Pascal Lecomte
and Chloé E.L. Delmas1

1INRAE, Bordeaux Sciences Agro, ISVV, Santé et Agroécologie du Vignoble (SAVE), Villenave d’Ornon, France
2Institut Français de la Vigne et du Vin, Pôle Rhône-Méditerranée, Rodilhan, France

Contact the author

Keywords

esca, Botryosphaeria dieback, modelling, weather, weekly incidence rate

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Culturable microbial communities associated with the grapevine soil in vineyards of La Rioja, Spain

The definition of soil health is complex due to the lack of agreement on adequate indicators and to the high variability of global soils. Nevertheless, it has been widely used as synonymous of soil quality for more than one decade, and there is a consensus warning of scientists that soil quality and biodiversity loss are occurring due to the traditional intensive agricultural practices.
In this work we monitored a set of soil parameters, both physicochemical and microbiological, in an experimental vineyard under three different management and land use systems: a) addition of external organic matter (EOM) to tilled soil; b) no tillage and plant cover between grapevine rows, and c) grapevines planted in rows running down the slope and tilled soil.

The impact of delayed grapevine budbreak on lemberger wine sensory compounds under variable weather conditions

Spring freeze events threaten grape production globally. As grape buds emerge from dormancy in spring, freezing temperatures have the potential to damage green tissues, decreasing yield potential and compromising fruit quality by harvest.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.