terclim by ICS banner
IVES 9 IVES Conference Series 9 Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Abstract

An increasing plant dieback has been observed in vineyards these past two decades, that has been partly attributed to the incidence of grapevine trunk diseases. Among them, esca and Botryosphaeria dieback are increasingly affecting grapevine mortality and yield loss, but little is known about the relationships between leaf symptoms and climate, hampering our ability to predict future trends in grapevine dieback. Our aim was to test short-term relationships between weather conditions and leaf symptom incidence in southern France vineyards. We harmonized and compiled summer surveys leaf symptoms of grapevine trunk disease in a database gathering 50 vineyards. Surveys were conducted on a weekly to bimonthly basis during the period 2003-2021, leading to 69 site-by-year plots. Vineyards were characterised by different ages (8 to 37 years old plants), grapevine varieties (n = 11), cultural practices, soil and climate conditions. Climate data were compiled from Safran daily data of Météo-France and averaged on different time steps. For each plot, we derived weekly rates of leaf symptom incidence using non-parametric Loess models. To account for contrasting conditions among vineyards, we scaled both leaf symptom and climate data, focusing on variations relative to plot. Statistical models show highly significant relationships between local leaf symptom trends and climatic conditions on a weekly to monthly time step. As expected, the higher the evaporative demand (temperature and humidity) the higher the incidence of new weekly cases. However, an increase in drought conditions and wind speed inhibited the incidence of leaf symptoms. Our results suggest that fungi associated with grapevine trunk diseases benefit from warm conditions but are inhibited by dry conditions that both are expected to increase in the next future. Our findings provide important insights to better understand plant-climate-diseases relationships in the field and anticipate trends for the next decades.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Thibaut Fréjaville1, Lucia Guérin-Dubrana1, Philippe Larignon2, Pascal Lecomte
and Chloé E.L. Delmas1

1INRAE, Bordeaux Sciences Agro, ISVV, Santé et Agroécologie du Vignoble (SAVE), Villenave d’Ornon, France
2Institut Français de la Vigne et du Vin, Pôle Rhône-Méditerranée, Rodilhan, France

Contact the author

Keywords

esca, Botryosphaeria dieback, modelling, weather, weekly incidence rate

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Shifting wine consumption trends (2019-2024): market dynamics, sustainability, and consumer preferences

This study examined the evolution of wine consumption trends from 2019 to 2024, analyzing market dynamics, sustainability preferences, and generational shifts in consumer behavior.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

Efecto de distintos ambientes sobre las características físico – químicas y sensoriales del Montepulciano d’Abruzzo DOC

La región de Abruzzo está situada entre los Apeninos y el mar Adriático, limitando al norte con el río Tronto y al sur con el Trigno. Desde un punto de vista físico se divide en dos franjas

Anthocyanins, flavonols and hydroxycinnamates of eight vitis vinifera cultivars from the balearic islands

In 2008 the anthocyanin, flavonol and hydroxycinnamate (HCT) contents of the skins of five coloured berry cultivars (‘Escursac’, ‘Esperó de Gall’, ‘Galmeter’, ‘Valent negre’ and ‘Vinater negre’), of two white cultivars (‘Argamussa’ and ‘Prensal blanc’) and of one weakly rose cultivar (‘Giró ros’), native from Balearic Islands, were characterized.

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.