terclim by ICS banner
IVES 9 IVES Conference Series 9 Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

Abstract

An increasing plant dieback has been observed in vineyards these past two decades, that has been partly attributed to the incidence of grapevine trunk diseases. Among them, esca and Botryosphaeria dieback are increasingly affecting grapevine mortality and yield loss, but little is known about the relationships between leaf symptoms and climate, hampering our ability to predict future trends in grapevine dieback. Our aim was to test short-term relationships between weather conditions and leaf symptom incidence in southern France vineyards. We harmonized and compiled summer surveys leaf symptoms of grapevine trunk disease in a database gathering 50 vineyards. Surveys were conducted on a weekly to bimonthly basis during the period 2003-2021, leading to 69 site-by-year plots. Vineyards were characterised by different ages (8 to 37 years old plants), grapevine varieties (n = 11), cultural practices, soil and climate conditions. Climate data were compiled from Safran daily data of Météo-France and averaged on different time steps. For each plot, we derived weekly rates of leaf symptom incidence using non-parametric Loess models. To account for contrasting conditions among vineyards, we scaled both leaf symptom and climate data, focusing on variations relative to plot. Statistical models show highly significant relationships between local leaf symptom trends and climatic conditions on a weekly to monthly time step. As expected, the higher the evaporative demand (temperature and humidity) the higher the incidence of new weekly cases. However, an increase in drought conditions and wind speed inhibited the incidence of leaf symptoms. Our results suggest that fungi associated with grapevine trunk diseases benefit from warm conditions but are inhibited by dry conditions that both are expected to increase in the next future. Our findings provide important insights to better understand plant-climate-diseases relationships in the field and anticipate trends for the next decades.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Thibaut Fréjaville1, Lucia Guérin-Dubrana1, Philippe Larignon2, Pascal Lecomte
and Chloé E.L. Delmas1

1INRAE, Bordeaux Sciences Agro, ISVV, Santé et Agroécologie du Vignoble (SAVE), Villenave d’Ornon, France
2Institut Français de la Vigne et du Vin, Pôle Rhône-Méditerranée, Rodilhan, France

Contact the author

Keywords

esca, Botryosphaeria dieback, modelling, weather, weekly incidence rate

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influence of a spontaneous cover crop on the vineyard and soil erosion under Mediterranean climate

Sixty five % of the agricultural area of the Basque Country located in the DO Ca Rioja corresponds to vineyards. More than 40% of it has an average slope greater than 10%, which makes it sensitive to erosive processes. Furthermore, it is foreseeable that extreme weather events (storms, hail, extreme heat and cold, etc.) will be favored due to climate change. Cover cropping can mitigate this risk, and therefore the objective of this work is to evaluate the impact that a vegetable cover has on the agronomic behavior of the vineyard, the quality of the grape and soil erosion. For this, a trial has been carried out with a Graciano variety vineyard with a slope between 10% -20% during the years 2020 and 2021. Conventional tillage management in the area has been compared (4-6 passes per year of tillage machinery) versus spontaneous vegetation cover management in the vineyard. This implies not tilling and allowing the grass of the land to colonize the range between the lines of vines, controlling their height through 1-3 mowing passes per year, always trying to affect the surface of the land as little as possible. The vegetative growth, yield and quality of the grape and wine was measured. Furthermore, erosion has been measured using Gerlasch boxes. The yield was lower in the second year of the trial in the cover crop treatment, but erosion was significantly reduced.

The impacts of simulated heatwaves on the induction and maintenance of bud cold tolerance in cultivated and wild-type Vitis species

Low temperatures are required for the acquisition and maintenance of bud cold tolerance, which are necessary for grapevines to survive freezing temperatures in winter.

Effects of the synergy between T. delbrueckii and S. cerevisiae in the winemaking of traditional cultivars from southeastern Italy

The combination of Torulaspora delbrueckii and Saccharomyces cerevisiae in co-inoculation and sequential inoculation in winemaking was investigated as an innovative strategy to increase the aromatic profile of wines like Verdeca and Nero di Troia wines, two traditional varieties from south-eastern Italy (Apulia Region).

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).