terclim by ICS banner
IVES 9 IVES Conference Series 9 Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

Abstract

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Paige Breen, James Campbell, Kayla Elmendorf, Seth Frey and Elisabeth Forrestel 

Department of Viticulture and Enology, University of California, Davis, USA

Contact the author

Keywords

climate index, climate science, Growing Degree Days, Napa Valley, viticulture

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

Comparing the chemical and sensory consequences of grapevine smoke exposure in grapes and wine from different cultivars and different wine regions in Australia

Aim: This study aimed to benchmark the chemical and sensory consequences of grapevine exposure to smoke, by comparing: (i) the concentration of volatile phenols and volatile phenol glycosides in control and smoke-affected grapes from different cultivars and different wine regions; and (ii) the chemical and sensory profiles of wines made from control and smoke-affected grapes, from different cultivars.  

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Evaluation of wood starch content on bench grafting success rate in grapevine

Since the emergence of phylloxera, grafting has been the most used propagation method in viticulture. Despite all the improvement measures implemented in the nurseries, it is frequent that graft success rates vary depending on the nursery process and scion/rootstock combinations. The reasons behind this unsatisfactory behaviour are still unknown and can be diverse, although carbohydrate reserves might be hypothesised to be crucial, since callus, root, and new tissue formation will be built based on them. In order to identify the effect of carbohydrates on grafting success, nine combinations were established based on the starch content in grapevine scionwoods (cv. Tempranillo clone VN69) and rootstocks cuttings (110 Richter clone 237) used for grafting: Low (L), Medium (M), High (H).