terclim by ICS banner
IVES 9 IVES Conference Series 9 Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Abstract

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Marc Plantevin, Mark Gowdy, Agnès Destrac-Irvine, Elisa Marguerit, Gregory Gambetta, and Cornelis van Leeuwen

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

water use efficiency, carbon isotopic discrimination, water potential, drought tolerance, VitAdapt

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Comparison of the free radical-scavenging activity in infected oidium and sound dolcetto grape cultivar grown in a terroir of Central Italy

The importance of polyphenols, which are present in many vegetables and grapes too, is well-know and documented. Specific research works about the red grape

Impact assessment of the reverse osmosis technique in wine alcohol management

Wine authenticity and composition can be influenced by a range of membrane separation processes as reverse osmosis. In the context of climate change, the natural trend is to obtain wines with higher alcoholic concentration when classical winemaking methods are employed, and this may induce alteration of typicity of wines by masking the olfactory and taste properties. This study aimed to evaluate the influence of reverse osmosis techniques used for decrease of ethanol content on the stable isotopic ratios as markers for wine authenticity characteristics.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).