terclim by ICS banner
IVES 9 IVES Conference Series 9 Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Abstract

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Marc Plantevin, Mark Gowdy, Agnès Destrac-Irvine, Elisa Marguerit, Gregory Gambetta, and Cornelis van Leeuwen

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

water use efficiency, carbon isotopic discrimination, water potential, drought tolerance, VitAdapt

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

DOES LIGNIN AN ACCEPTABLE MARKER OF GRAPESEED MATURATION AND QUALITY?

Usually the winemaker consider polyphenols from the grape berry as an actor of the wine quality. There are frequently consider as a marker of grape maturity. It is commonly known that winemaker consider tannins and anthocyanins as main polyphenol actors for winemaking practices and wine quality. Here we will focus on the characterisation of lignins in grape seeds. Previous studies suggest that the seed is lignified [1], which could explain the change in colour of the seed when it reaches maturity and thus provide a reliable indicator for describing the maturity stage in the seed.

Introducing heterogeneity measurements in terroir studies. Application in the região demarcada do douro (n portugal)

Terroir zoning studies have to manage the heterogeneity and complexity of the landscape properties and processes. The varying geology is one of the main landscape properties conditioning the spatial variability of terroirs.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Double success of combining technical management with low pesticide inputs in the vineyard to obtain PDO wines in France

Viticulture is a major contributor to the antagonism of positive reputation and negative environmental impacts of agriculture. Vine contributes to structure landscape in the world, resulting, for example, in the delimitation of protected designations of origin (PDO). PDO vine is currently subject to the double challenge of sustainability and climate change adaptation. As vine is very sensitive to diseases and pests, vine requires a high use of pesticides to achieve its quality and yield goals. This high need for pesticides is the most important negative impact of environmental components.

International Terroir Congress: 14 years of scientific proceedings!

We are a partner of the International Terroir Congress. For 4 months, our team has been putting the congress archives online. We are very proud to announce that the 14 years of archives are finally available. All archives of the International Terroir Congress are...