terclim by ICS banner
IVES 9 IVES Conference Series 9 The use of rootstock as a lever in the face of climate change and dieback of vineyard

The use of rootstock as a lever in the face of climate change and dieback of vineyard

Abstract

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Coralie Dewasme1, Séverine. Mary2, Jean-Pascal Tandonnet1, Guillaume Darrieutort2, Jean-Christophe Barbe3 and Jean-Philippe Roby1

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2Vitinnov, Bordeaux Sciences Agro, ISVV, Villeanve d’Ornon, France
3Univ. Bordeaux, UR oenologie EA 4577, USC 1366 INRAE, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

berry composition, Cabernet-Sauvignon, climate change, rootstock, yield

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Assessment of plant water consumption rates under climate change conditions through an automated modular platform

The impact of climate change is noticeable in the present weather, making water scarcity the most immediate mediator reducing the performance and viability of crops, including grapevine (Vitis vinifera L.). The present study developed a system (hardware, firmware, and software) for the determination of plant water use through changes in weight through a period. The aim is to measure the differences in grapevine water consumption in response to climate change (+4oC and 700 ppm) under controlled conditions. The results reveal a correlation between daily plant consumption rates and reference evapotranspiration (ETo).

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.