terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Abstract

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of the precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel. 

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Olivier Geffroy1, Thomas Baerenzung dit Baron1,2, Christian Chervin3, Chloé Cuif1, Carole Feilhès4, Elodie Gassiolle5, Christine Roynette6, Valérie Simon2 and Alban Jacques1

1Physiologie, Pathologie et Génétiques Végétales (PPGV), INP-PURPAN, Toulouse, France
2Laboratoire de Chimie Agro-Industriel (LCA), INP-ENSIACET, Toulouse, France
3Génomique et Biotechnologie des Fruits (GBF), INP-ENSAT, Toulouse, France
4Institut Français de la Vigne et du Vin pôle Sud-Ouest, Lisle-sur-Tarn, France
5Plaimont Producteurs, Saint-Mont, France
6AsclepiosTech, Tournefeuille, France

Contact the author

Keywords

rotundone, defoliation, UV radiations, shielding sheets, signalling pathway

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Rootstocks of prestigious Bordeaux vineyards: implications on quality and yield

Rootstocks have been used in most of the vineyards for over a century. This may seem to be a long period, but it represents only three successive plantations.

Yield characteristics and environmental effects of plastic covers on table grape with relation to chemical, physical, radiometric and satellite analyses

Climate change poses a significant challenge for global viticulture, with growing evidence of its negative impact on thermal and hydric regimes, both of which are essential for the development of table grapes.

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).