terclim by ICS banner
IVES 9 IVES Conference Series 9 Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Abstract

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of the precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel. 

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Olivier Geffroy1, Thomas Baerenzung dit Baron1,2, Christian Chervin3, Chloé Cuif1, Carole Feilhès4, Elodie Gassiolle5, Christine Roynette6, Valérie Simon2 and Alban Jacques1

1Physiologie, Pathologie et Génétiques Végétales (PPGV), INP-PURPAN, Toulouse, France
2Laboratoire de Chimie Agro-Industriel (LCA), INP-ENSIACET, Toulouse, France
3Génomique et Biotechnologie des Fruits (GBF), INP-ENSAT, Toulouse, France
4Institut Français de la Vigne et du Vin pôle Sud-Ouest, Lisle-sur-Tarn, France
5Plaimont Producteurs, Saint-Mont, France
6AsclepiosTech, Tournefeuille, France

Contact the author

Keywords

rotundone, defoliation, UV radiations, shielding sheets, signalling pathway

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Identification of green, aggressive and hard character of wines by a chemo-sensory directed methodology

With climate change, it is progressively more often to obtain grapes with an acceptable content in sugars or acids but with immature tannins described as green, aggressive or hard (noted as GAH onwards). During winemaking, the oenologist has to make decisions related to the elaboration of such grapes based mainly on empirical experience, given the lack of objective criteria to this concern. An increase in the chemical and sensory knowledge of immature tannins would allow managing this GAH character of grapes with the maximum possible efficiency during winemaking processes. The present work aims at isolating and identifying the group of compounds responsible for the GAH character present in wines.

Application of high power ultrasounds during red wine vinification

Wine color is one of the main organoleptic characteristics influencing its quality. It is of especial interest in red vinifications due to the economic resources that wineries have to invest for the extraction of the phenolic compounds responsible of wine color, compounds that are mainly located inside the skin cell vacuoles. Moreover, these phenolic compounds not only influence color but also other organoleptic properties such as body, mouthfeel, astringency and flavour. The transference of phenolic compounds from grapes to must during vinification is closely related with the type of grapes and the winemaking technique.

Impact of aging on dimethyl sulfide (DMS) in Corvina and Corvinone wines

Dimethyl sulfide (DMS) is a low molecular weight sulfur compound produced in wine during aging by the chemical degradation of S-Methyl-L-methionine (SMM). Investigating the aromatic profile of Amarone commercial wines from different wineries, it was found that DMS presented a high variation in concentration across wine samples ranging from 2.88 to 64.34 μg/L, which potentially can

Geological history and landscape of the Coastal wine-growing region, South Africa

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons