terclim by ICS banner
IVES 9 IVES Conference Series 9 Phenological characterization of a wide range of Vitis Vinifera varieties

Phenological characterization of a wide range of Vitis Vinifera varieties

Abstract

In order to study the impact of climate change on Bordeaux grape varieties and to assess the adaptation capacities of candidates to the grape varieties of this wine region to the new climatic conditions, an experimental block design composed of 52 grape varieties was set up in 2009 at the INRAE Bordeaux Aquitaine center. Among the many parameters studied, the three main phenological stages of the vine (budburst, flowering and veraison) have been closely monitored since 2012. Observations for each year, stage and variety were carried out on four independent replicates. Precocity indices have been calculated from the data obtained over the 2012-2021 period (Barbeau et al. 1998). This work allowed to group the phenological behaviour of the grapevine varieties, not only based on the timing of the subsequent developmental stages, but also on the overall precocity of the cycle and the total length of the cycle between budburst and veraison. Results regarding the variability observed among the different grape varieties for these phenological stages are presented as heat maps.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Agnès Destrac Irvine, Karel Mercken, Diego Vergara, Mark Gowdy, Nathalie Ollat and Cornelis Van Leeuwen

EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France 

Contact the author

Keywords

phenology, classification, climate change, precocity indices

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Supporting wine production from vineyard to glass through secure IoT devices and blockchain

Temperature fluctuations can significantly affect the chemical composition of wine and in turn its taste and aromas.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.