terclim by ICS banner
IVES 9 IVES Conference Series 9 Aromatic maturity is a cornerstone of terroir expression in red wine

Aromatic maturity is a cornerstone of terroir expression in red wine

Abstract

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Cornelis van Leeuwen1, Jean-Christophe Barbe2, Philippe Darriet2, Agnès Destrac-Irvine1, Marc Gowdy1, Georgia Lytra2, Axel Marchal2, Stéphanie Marchand2, Marc Plantevin2, Xavier Poitou3, Alexandre Pons2,4, Gilles de Revel2 and Cécile Thib

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
2
Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, Univ. Bordeaux, ISVV, Villenave d’Ornon France
3Jas Hennessy, Cognac, France
4Tonnellerie Seguin-Moreau, Cognac, France

Contact the author

Keywords

Vitis vinifera, grapevine, maturity, aroma, terroir

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Protein stabilization of white wines by stabilizing filtration: pilot studies

Protein stabilization is an important part of the winemaking process of white wines, and in this work we present the results of protein stabilization of different monovarietal wines (Xarel.lo, Chardonnay, and Muscat) by a continuous stabilizing filtration process using a column packed with zirconium oxide operating in a continuous regime in a closed loop at pilot scale.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.

Improving the phenolic composition of cv tempranillo wines by blending grapes of different ripening state

The aim of this work was to reduce the alcohol content of Tempranillo wine. Tempranillo wines were produced by grapes harvested at different ripening dates (August 11 which was 21 oBrix and September 28 with 25 oBrix). At the second date, the Tempranillo wines were elaborated as follows: grapes were destemmed, crushed and collected into 50 L stainless-steel vats. Before preferementative maceration in cold, 50 % (M1) and 70 % (M2) of the must have been replaced by the same percentage of must from the first harvest. In addition, a control wine (C) was performed with only grapes from the second harvest.

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.