terclim by ICS banner
IVES 9 IVES Conference Series 9 Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

Abstract

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

A. Sergio Serrano Parra1,2, Jesús Martínez Gascueña1, Gonzalo L. Alonso2, Cristina Cebrián-Tarancón2, María Dolores Carmona Zapata1, Adela Mena Morales1 and Juan Luis Chacón Vozmediano1

1Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Tomelloso, Ciudad Real, Spain
2Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Albacete, Spain

Contact the author

Keywords

grapevine, yield, water stress, carbon isotopic ratio, oxygen isotopic ratio

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Consumers’ emotional responses elicited by wines according to organoleptic quality

Wine is often described with emotional terms, such as surprising, disappointing or pleasant. However, very little has been done to really characterize this link between emotions and wine. Can it really bring emotions to wine tasters? Many studies have looked at the extrinsic factors that can improve the emotional

Vegetative propagation during domestication – rooting ability of wild grapevines

The origins of plant propagation trace back to the moment of early humans’ transition from a nomadic existence to settled agricultural societies, cultivating their food.

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling

Effect of SO2, GSH and gallotannins on the shelf-life of a cortese white wine

Studying the effect of the addition of reduced glutathione (GSH) and/or gallotannins at bottling to limit the use of SO2 in white winemaking.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].