terclim by ICS banner
IVES 9 IVES Conference Series 9 Local adaptation tools to ensure the viticultural sustainability in a changing climate

Local adaptation tools to ensure the viticultural sustainability in a changing climate

Abstract

Over the next century, the projected changes in regional climates are expected to have important consequences on wine production. They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of wine growing regions. To contextualize the possible temporal and spatial climate change impacts, this study first assessed the past and expected (RCP 4.5 and RCP 8.5) viticultural potential of 24 vineyards sites representative of the middle Loire Valley, namely sites with a weakly, moderately and strongly weathered bedrock having various water holding capacities. Simple terrain tools were then applied to illustrate the likely trends in possible wine quality and style for these 24 sites. While wine quality is shaped by natural features as soil properties, winegrowers’ perennial and annual decision-making inevitably play also an important role. Using a water balance model available for the 24 sites, the effect of different soil management practices on vine performance as well as wine quality and style were evaluated. To validate this applied approach using terrain tools, the final part of the study looked at support precision tools, namely vegetation indices derived from satellite imagery. These indices allow to monitor and estimate the vine water status of the different sites and therefore the delineation of viticultural zones with similar features. As a global changing climate denotes an increase in uncertainty, both in time and over space, these local adaptation tools allow winegrowers to better understand the past and expected viticultural potentialities of their vineyards. These tools should also enhance the resilience of winegrowers as they adopt no-regret strategies that are place specific.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Etienne Neethling1, Cécile Coulon-Leroy1, Etienne Goulet2,3 and Francois Gallet4

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, Angers, France
2IFV, Institut Français de la Vigne et du Vin, Beaucouzé, France
3InterLoire, Interprofessions des Vins du Val de Loire, Tours, France
4Scanopy, Quincy, France

Contact the author

Keywords

climate change, adaptation tools, middle Loire Valley, conceptual model, wine identity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Relation entre les caractéristiques des fromages d’Appellation d’Origine Contrôlée et les facteurs de production du lait

Les fromages d’Appellation d’Origine Contrôlée (AOC) représentent un enjeu économique important pour la filière laitière (11 % des fromages produits en France sont des fromages d’AOC, et dans certaines régions de montagne, cette proportion dépasse 50 %). Les spécificités de ces fromages et leurs liaisons avec les caractéristiques du terroir constituent un système complexe où interagissent en particulier la technologie fromagère et les caractéristiques des laits (composition chimique en particulier). Ces dernières dépendent elles-mêmes des caractéristiques des animaux (origine génétique, facteurs physiologiques, état sanitaire) et de leur mode de conduite (alimentation, hygiène, traite…) (fig. 1). L’influence de ces facteurs de production (alimentation et type d’animal en particulier) sur les caractéristiques des fromages est fréquemment mise en avant par les fromagers, sur la base d’observations empiriques. Il existe cependant très peu de travaux expérimentaux sur le sujet, en raison, entre autres, de la difficulté de séparer correctement les effets propres de ces facteurs d’amont de ceux liés à la technologie fromagère.

Application of Hyper Spectral Imaging for early detection of rachis browning in table grapes

Rachis browning is a common abiotic stress that occurs during postharvest storage, leading to a decrease in commercial value of table grapes and resulting in significant economic losses. Its early detection could enable the implementation of preventive strategies. In this report, we show the feasibility of a non-destructive early detection of browning based on Hyper Spectral Imaging (HSI). Furthermore, rachis samples were subjected to transcriptomic analysis to understand putative pathways causing differences in browning within varieties.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.