terclim by ICS banner
IVES 9 IVES Conference Series 9 Local adaptation tools to ensure the viticultural sustainability in a changing climate

Local adaptation tools to ensure the viticultural sustainability in a changing climate

Abstract

Over the next century, the projected changes in regional climates are expected to have important consequences on wine production. They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of wine growing regions. To contextualize the possible temporal and spatial climate change impacts, this study first assessed the past and expected (RCP 4.5 and RCP 8.5) viticultural potential of 24 vineyards sites representative of the middle Loire Valley, namely sites with a weakly, moderately and strongly weathered bedrock having various water holding capacities. Simple terrain tools were then applied to illustrate the likely trends in possible wine quality and style for these 24 sites. While wine quality is shaped by natural features as soil properties, winegrowers’ perennial and annual decision-making inevitably play also an important role. Using a water balance model available for the 24 sites, the effect of different soil management practices on vine performance as well as wine quality and style were evaluated. To validate this applied approach using terrain tools, the final part of the study looked at support precision tools, namely vegetation indices derived from satellite imagery. These indices allow to monitor and estimate the vine water status of the different sites and therefore the delineation of viticultural zones with similar features. As a global changing climate denotes an increase in uncertainty, both in time and over space, these local adaptation tools allow winegrowers to better understand the past and expected viticultural potentialities of their vineyards. These tools should also enhance the resilience of winegrowers as they adopt no-regret strategies that are place specific.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Etienne Neethling1, Cécile Coulon-Leroy1, Etienne Goulet2,3 and Francois Gallet4

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, Angers, France
2IFV, Institut Français de la Vigne et du Vin, Beaucouzé, France
3InterLoire, Interprofessions des Vins du Val de Loire, Tours, France
4Scanopy, Quincy, France

Contact the author

Keywords

climate change, adaptation tools, middle Loire Valley, conceptual model, wine identity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Evaluation of aroma characteristics in Vitis amurensis grapes across different regions by using HS-SPME-GC/MS

Background: Aroma compounds are important secondary metabolite in grapes and play important roles in the flavor and quality of grape berries and their wines. Vitis amurensis grape belongs to the East Asian Vitis spp., with excellent cold and disease resistance, and exhibits strong brewing potential. However, it has not been effectively utilized and there is no systematic research on the aroma compounds of V. amurensis grapes.
Methods: To provide sufficient experimental evidence for the characteristic aroma of V. amurensis grape, HS-SPME-GC/MS was used to identify the aroma compounds of five V. amurensis (‘Beiguohong’, ‘Beiguolan’, ‘Shuangfeng’, ‘Shuanghong’, ‘Shuangyou’) and three interspecific hybrids (‘Beibinghong’, ‘Xuelanhong’, ‘Zuoyouhong’) grapes in Zuojia and Ji’an. The grape berries were collected at harvest in 2020, 2021 and 2022.

Seed phenolics oxidation: development of a new ripening index 

During ripening seed tannins evolve, as demonstrated by the taste and color changes. In this work we tried to develop an objective, easy and fast index, useful for winemakers. In this direction we propose two different spectrophotometric indexes, one related to the molecular structure and tannin subunits linkages, and the other related to the antioxidant properties. Especially the second one gave very interesting and unexpected results.

Towards understanding the mechanisms of resistance to grapevine Flavescence dorée

Flavescence dorée (FD) is a very serious grapevine disease, classified as quarantine in europe, where it appeared in the middle of the last century. It is associated with the presence of phytoplasmas, transmitted in the vineyard by a leafhopper of american origin, scaphoideus titanus. FD causes severe wine production losses and often leads to plant death. There are currently no alternative solutions to insecticide treatments against the vector and uprooting diseased vines.

Grape ripening and wine style: synchronized evolution of aromatic composition of shiraz wines from hot and temperate climates of Australia

Grape ripening is a process driven by the interactions between grapevine genotypes and environmental factors. Grape composition is largely responsible for the production