terclim by ICS banner
IVES 9 IVES Conference Series 9 Local adaptation tools to ensure the viticultural sustainability in a changing climate

Local adaptation tools to ensure the viticultural sustainability in a changing climate

Abstract

Over the next century, the projected changes in regional climates are expected to have important consequences on wine production. They vary from short-term impacts on wine quality and style, to long-term issues such as varietal suitability and the economic sustainability of wine growing regions. To contextualize the possible temporal and spatial climate change impacts, this study first assessed the past and expected (RCP 4.5 and RCP 8.5) viticultural potential of 24 vineyards sites representative of the middle Loire Valley, namely sites with a weakly, moderately and strongly weathered bedrock having various water holding capacities. Simple terrain tools were then applied to illustrate the likely trends in possible wine quality and style for these 24 sites. While wine quality is shaped by natural features as soil properties, winegrowers’ perennial and annual decision-making inevitably play also an important role. Using a water balance model available for the 24 sites, the effect of different soil management practices on vine performance as well as wine quality and style were evaluated. To validate this applied approach using terrain tools, the final part of the study looked at support precision tools, namely vegetation indices derived from satellite imagery. These indices allow to monitor and estimate the vine water status of the different sites and therefore the delineation of viticultural zones with similar features. As a global changing climate denotes an increase in uncertainty, both in time and over space, these local adaptation tools allow winegrowers to better understand the past and expected viticultural potentialities of their vineyards. These tools should also enhance the resilience of winegrowers as they adopt no-regret strategies that are place specific.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Etienne Neethling1, Cécile Coulon-Leroy1, Etienne Goulet2,3 and Francois Gallet4

1ESA, USC 1422 INRA-GRAPPE, Ecole Supérieure d’Agricultures, Angers, France
2IFV, Institut Français de la Vigne et du Vin, Beaucouzé, France
3InterLoire, Interprofessions des Vins du Val de Loire, Tours, France
4Scanopy, Quincy, France

Contact the author

Keywords

climate change, adaptation tools, middle Loire Valley, conceptual model, wine identity

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Data integration via modeling for adaptation to climate change and efficiency breeding in grapevine

Climate can greatly affect grape yield and quality (van Leeuwen et al., 2024). Growing suitable cultivars in a given region and or breed environmental resilient cultivars are essential for maintaining viticulture sustainability, particularly in the face of climate change (Wolkovich et al., 2018).

What is the best soil for Sangiovese quality wine?

Sangiovese is one of the main cultivar in the Italian ampelographic outline and it occupies more than 60% of total vineyard surface in the Tuscany region. It is also well known that the environmental

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

Modulating the phyllosphere microbiome in grapevine using plant biostimulants to enhance protection against biotic and abiotic stress

Context and purpose of the study. Climate change scenarios predict ever increasing frequency of drought events and coupled with disease outbreaks poses survival risks to perennial fruit crops such as grapevine.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.