Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

Abstract

AIM: The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes [1]. As a strategy to face this situation, the use of apatite (Ap) nanoparticles as nano-transporters of the elicitor, methyl jasmonate (Ap-MeJ), is proposed. Elicitors are compounds that, when applied to plants, activate their defense mechanisms, increasing the synthesis of secondary metabolites, mainly phenolic compounds [2, 3]. To date, methyl jasmonate (MeJ) has been used conventionally, but its “nano” application could improve its penetration into the plant, releasing it slowly, which would allow a reduction in the dose to be applied. Therefore, the objective of this work was to study the influence of foliar application of conventional MeJ and MeJ formulated in “nano” form on the composition of Tempranillo grapes during ripening.

METHODS: The experimental design was a randomized block design with three treatments, each in triplicate, with 10 vines per replicate. Foliar applications were carried out at veraison and 7 days later. In each application, 200 mL of solution was applied per plant, being the treatments: control (water), MeJ (10 mM) and Ap-MeJ (1 mM). Grape samples were taken at five points in time: one day before the first application (Fol1), one day before the second application (Fol2), fifteen days after the second application (Pre: pre-harvest), the day of harvest (Vend) and 15 days after harvest (Post: post-harvest). In each sample, the general parameters were determined using official methods [4]: ºBrix, pH, total acidity, glucose+fructose, malic acid, and total phenols.

RESULTS: The results obtained with the foliar application of MeJ as a tool to approximate the phenolic and technological maturity are promising. It has been observed that both, conventional MeJ and Ap-MeJ treatments, slightly reduced ºBrix of grapes and increased their phenolic content. Throughout ripening, the increase in phenolic compounds was mainly evident from pre-harvest to post-harvest, with a higher content in grapes treated with Ap-MeJ.

CONCLUSIONS:

The application of MeJ could be an appropriate technique to mitigate the negative effects of decoupling in grape ripening related to the climate change. Moreover, the use of Ap-MeJ allows to optimize its dosage, contributing to a sustainable and economically viable viticulture.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Teresa Garde-Cerdán , Carretera De Burgos, Pérez-Álvarez, Baroja, Ramírez-Rodríguez,  Martínez-Vidaurre, Delgado-López P. Rubio-Bretón, Garde-Cerdán

Instituto De Ciencias De La Vid Y Del Vino (Csic, Universidad De La Rioja, Gobierno De La Rioja). Km. 6. 26007 Logroño, Spain,E.P.
Instituto De Ciencias De La Vid Y Del Vino E.
Instituto De Ciencias De La Vid Y Del Vino G.B. Universidad De Granada J.M.
Instituto De Ciencias De La Vid Y Del Vino J.M.
Instituto De Ciencias De La Vid Y Del Vino T.
Instituto De Ciencias De La Vid Y Del Vino

Contact the author

Keywords

Elicitors; nanotechnology; methyl jasmonate; foliar application; vineyard; grape composition; ripening; phenolic maturity; technological maturity; climate change

Citation

Related articles…

Elevational range shifts of mountain vineyards: Recent dynamics in response to a warming climate

Increasing temperatures worldwide are expected to cause a change in spatial distribution of plant species along elevational gradients and there are already observable shifts to higher elevations as a consequence of climate change for many species. Not only naturally growing plants, but also agricultural cultivations are subject to the effects of climate change, as the type of cultivation and the economic viability depends largely on the prevailing climatic conditions. A shift to higher elevations therefore represents a viable adaptation strategy to climate change, as higher elevations are characterized by lower temperatures. This is especially important in the case of viticulture because a certain wine-style can only be achieved under very specific climatic conditions. Although there are several studies investigating climatic suitability within winegrowing regions or longitudinal shifts of winegrowing areas, little is known about how fast vineyards move to higher elevations, which may represent a viable strategy for winegrowers to maintain growing conditions and thus wine-style, despite the effects of climate change. We therefore investigated the change in the spatial distribution of vineyards along an elevational gradient over the past 20 years in the mountainous wine-growing region of Alto Adige (Italy). A dataset containing information about location and planting year of more than 26000 vineyard parcels and 30 varieties was used to perform this analysis. Preliminary results suggest that there has been a shift to higher elevations for vineyards in general (from formerly 700m to currently 850 m a.s.l., with extreme sites reaching 1200 m a.s.l.), but also that this development has not been uniform across different varieties and products (i.e. vitis vinifera vs hybrid varieties and still vssparkling wines). This is important for climate change adaptation as well as for rural development. Mountain areas, especially at mid to high elevations, are often characterized by severe land abandonment which can be avoided to some degree if economically viable and sustainable land management strategies are available.

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Under-vine cover crops: impact on weed development, yield and grape composition

This study aims to evaluate the interest of using an under-vine cover crop as a sustainable management tool replacing herbicides or tillage to control weeds, evaluating its effects on yield and berry parameters in a semi-arid climate. 
The performance of Trifolium fragiferum as an under-vine cover crop was evaluated in 2018 and 2019 in a Merlot vineyard in

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

Effects of future climate change on grape quality: a case study for the Aglianico grape in Campania region, Italy

Water deficits limit yields and this is one of the negative aspects of climate change. However, this applies particularly when emphasis is on biomass production (e.g. for crops like maize, wheat, etc.)