terclim by ICS banner
IVES 9 IVES Conference Series 9 Measurement of redox potential as a new analytical winegrowing tool

Measurement of redox potential as a new analytical winegrowing tool

Abstract

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alice Dauphin1,2, Tommaso Nicolato2 and Vincent Renouf2

 

1Laboratoire CBMN, CNRS UMR 5248, Pessac, France
2Laboratoire EXCELL, Floirac, France

Contact the author

Keywords

electrochemistry, leaf, redox potential, soil

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.

Biophysical and agronomical drivers of the distribution of Plasmopara viticola oospores in vineyard soils

Grapevine downy mildew (GDM), caused by the obligate biotroph oomycete Plasmopara viticola, is one of the most destructive diseases in viticulture.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].