terclim by ICS banner
IVES 9 IVES Conference Series 9 Measurement of redox potential as a new analytical winegrowing tool

Measurement of redox potential as a new analytical winegrowing tool

Abstract

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alice Dauphin1,2, Tommaso Nicolato2 and Vincent Renouf2

 

1Laboratoire CBMN, CNRS UMR 5248, Pessac, France
2Laboratoire EXCELL, Floirac, France

Contact the author

Keywords

electrochemistry, leaf, redox potential, soil

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.

The 1-hydroxyoctan-3-one, a molecule potentially involved in the fresh mushroom off-flavor in wines

An organoleptic defect, called fresh mushrooms off-flavor (FMOff), appeared in wines and spirits since the 2000’s. Numerous researches demonstrated that octen-3-one, 3-octanol and octen-3-ol (C8 compounds) were involved in the mushroom off-flavor in wines

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.

Valutazione comparativa di cloni di Pinot nero per la produzione di vini base spumante in alcuni ambienti del Piemonte

Un vasto programma si riferisce alla verifica di 28 selezioni clonali di Pinot nero atte a vini base spumante. Gli impianti sono stati realizzati in diversi ambienti delle Langhe e del Monferrato nel periodo 1992-1996, in 57 vigneti diversi e su una superficie complessiva di circa 50 Ha.

Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

To study the copigmentation between different wine flavonols (myricetin, quercetin, kaempferol, isorhamnetin and syringetin 3-O-glucosides) and malvidin