terclim by ICS banner
IVES 9 IVES Conference Series 9 Measurement of redox potential as a new analytical winegrowing tool

Measurement of redox potential as a new analytical winegrowing tool

Abstract

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Alice Dauphin1,2, Tommaso Nicolato2 and Vincent Renouf2

 

1Laboratoire CBMN, CNRS UMR 5248, Pessac, France
2Laboratoire EXCELL, Floirac, France

Contact the author

Keywords

electrochemistry, leaf, redox potential, soil

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

Preliminary studies on polyphenol assessment by Fourier transform-near infrared spectroscopy (FT-NIR) in grape berries

NIR spectroscopy has widely been tested in viticulture as powerful alternative to traditional analytical methods in the field of quality evaluation. NIR instruments have been used for assessing must and wine quality features in several works, but little information regarding their application on whole berries for polyphenol determination is available.

Phenolic profiles of minor red grape cultivars autochthonous from the Spanish region of La Mancha

The phenolic profiles of little known red grape cultivars, namely Garnacho, Moribel and Tinto Fragoso, which are autochthonous from the Spanish region of La Mancha (ca. 600,000 ha of vineyards) have been studied over the consecutive seasons of years 2013 and 2014. The study was separately performed over the skins, the pulp and the seeds, and comprised the following phenolic types: anthocyanins, flavonols, hydroxycinnamic acid derivatives (HCADs), total proanthocyanidins (PAs) and their structural features. The selected grape cultivars belong to the Vine Germplasm Bank created in this region in order to preserve the great diversity of genotypes grown in La Mancha.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Precision viticulture: using on-board sensors to map vine variability and characterize vine trajectories

Precision viticulture consists in using ICT (Information and Communication Technology) to implement more specific and better targeted technical vine practices. With proxy-detection