GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Long term influence of a cover crop in the agronomic and oenological performance of CV. Chardonnay

Abstract

Context and purpose of the study- Cover crops are acknowledged to be an interesting tool to produce higher quality grapes in red varieties, as they generally reduce vine vigour and yield. However, their incidence in white wine quality is not clear, since higher nitrogen availability can play an important positive role, and cover crops may compete for this nutrient. The possible reduction in available nitrogen can also modify the fermentation processes, as well as the synthesis of aromas in the wine. The aim of this work was to evaluate the long-term effect of a grass cover crop on grape and wine quality.

Material and methods – The study was conducted in a cv. Chardonnay vineyard located in Otazu (Navarra, Spain). During the 10 years prior to the experiment, the vineyard had been managed with a Festuca arundinacea and Lolium rigidum cover crop. In order to evaluate its incidence, at the beginning of the experiment, part of the rows were tilled, and the agronomic and oenological performance of both soil management strategies compared, with a detailed evaluation of the effects on must and wine amino acids.

Results – After 5 years of evaluation, the presence of the cover crop was shown not to affect yield, cluster number or berry weight, but it decreased pruning wood weight and leaf nitrogen content. Regarding grape composition, no differences were observed in terms of sugar content, pH and titratable acidity but covercropped vines produced grapes with lower yeast assimilable nitrogen and amino acid

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Javier ABAD1,2*, Félix CIBRIÁIN3, Luis G. SANTESTEBAN2, Diana MARÍN2, Ana SAGÜÉS3

INTIA, Edificio de Peritos Avda. Serapio Huici nº 22, 31610, Villava, Spain
Dpt. Agronomy, Biotechnology and Food Science, Univ. P. de Navarra, Campus Arrosadia, 31006 Pamplona, Spain
Sección de Viticultura y Enología, Gobierno de Navarra, C/Valle de Orba nº34, 31390, Olite, Spain

Contact the author

Keywords

amino acids, wine, tillage, Vitis vinifera L.

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Recognition of terroir in american viticultural areas

Un’ Area di Viticultura Americana, detta AVA, è una regione vinicola delimitata ed è dis­tinguibile da caratteristiche geografiche i cui confini sono stati definiti da regolamenti. Il sistema AVA rappresenta un ‘accettazione del concetto di terroir (terreno), come dimostra­no gli studi che confermano il carattere regionale dei vini AVA e dalla sviluppo di sub­denominazioni più relazionate al terreno.

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion