terclim by ICS banner
IVES 9 IVES Conference Series 9 Sustainable fertilisation of the vineyard in Galicia (Spain)

Sustainable fertilisation of the vineyard in Galicia (Spain)

Abstract

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

María Dolores Loureiro Rodríguez1, Juan Carlos Vázquez Abal1, Javier José Cancela Barrio2, Daniel Durán Pereira3, María del Carmen Saborido Díaz1, Lucía Lloret Caulonga4, Carlos Alberte5 and Emilia Díaz Losada1 

1Axencia Galega da Calidada Alimentaria (AGACAL)-EVEGA. Leiro, Ourense, Spain
2Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Lugo, Spain
3Sociedad Cooperativa Vitivinícola Arousana. Meaño, Pontevedra, Spain 
4FEUGA Fundación Empresa- Universidad Gallega. Santiago de Compostela, A Coruña 
5Vitivinícola del Ribeiro SCG. Ribadavia, Ourense, Spain

Contact the author

Keywords

fertilization, grapevine, TIC, soil, sustainability

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Characterization of Cabernet Sauvignon from Maipo valley (Chile) using fluorescence measurement

Viral diseases are a significant cause of both decreased grape quality and vineyard production. Important agents include grapevine leafroll-associated virus (glravs) and grapevine rupestris stem pitting-associated virus (grspav). However, conducting phytosanitary analysis of vineyards for viruses on-site is challenging, and molecular testing is generally expensive.

A NEW SPECIFIC LINEAGE OF OENOCOCCUS OENI IN COGNAC APPELLATION WINES

Oenococcus oeni is the main lactic acid bacteria (LAB) species which conducts the malolactic fermentation (MLF) in wine. During MLF, O. oeni converts malic acid into lactic acid, which modulates wine aroma composition leading to better balanced organoleptic properties. O. oeni is a highly specialized species only detected in environments containing alcohol such as wine, cider or kombucha. Genome analysis of more than 240 strains showed that they form at least 4 main phylogenetic lineages and several sublineages, which are associated with different beverages or types of wines.

Evaluation of intravarietal variability and selection for tolerance to downy mildew: The case of Antão Vaz variety in Portugal 

Antão Vaz is a Portuguese white grapevine variety grown mainly in the wine-growing regions of Southern Portugal, particularly in the Alentejo, Lisbon and Setúbal peninsula regions. It is a very vigorous and productive variety, giving the wines a strong identity. It needs heat and sunlight and prefers deep and dry soils, which makes it tolerant to scald caused by the high summer temperatures of Southern Portugal. However, this variety is very susceptible to downy mildew, caused by plasmopara viticola, a very destructive disease in years with rainy springs.

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

Measurement of grape vine growth for model evaluation

Within a research project for simulating the nitrogen turnover in vineyard soils and the nitrogen uptake by the grape vine, a previously developed plant growth model (Nendel and Kersebaum 2004) had to be evaluated. A dataset was obtained from a monitoring experiment at three vineyard sites with different soil types, conducted in the years 2003 and 2004.