terclim by ICS banner
IVES 9 IVES Conference Series 9 Sustainable fertilisation of the vineyard in Galicia (Spain)

Sustainable fertilisation of the vineyard in Galicia (Spain)

Abstract

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

María Dolores Loureiro Rodríguez1, Juan Carlos Vázquez Abal1, Javier José Cancela Barrio2, Daniel Durán Pereira3, María del Carmen Saborido Díaz1, Lucía Lloret Caulonga4, Carlos Alberte5 and Emilia Díaz Losada1 

1Axencia Galega da Calidada Alimentaria (AGACAL)-EVEGA. Leiro, Ourense, Spain
2Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Lugo, Spain
3Sociedad Cooperativa Vitivinícola Arousana. Meaño, Pontevedra, Spain 
4FEUGA Fundación Empresa- Universidad Gallega. Santiago de Compostela, A Coruña 
5Vitivinícola del Ribeiro SCG. Ribadavia, Ourense, Spain

Contact the author

Keywords

fertilization, grapevine, TIC, soil, sustainability

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

The main objective of this work is to study and model the impact of the polyphenolic profile on the stability and quality of wine aroma during oxidative aging.

Correlation between agronomic performance and resistance gene in PIWi varieties in the field

Today’s viticulture faces a considerable challenge dealing with fungal diseases and limitations on the use of plant protection products (PPP) have increased the pressure to find more sustainable alternatives. One strategy may be the development and cultivation of disease-resistant grapevine varieties (PIWI) that could maintain crop productivity and quality while reducing dependence on PPP. In this work a set of 9 PIWI varieties (5 white and 4 red) deploying genes for resistance to powdery and downy mildew were evaluated in two consecutive years in Valdegón, La Rioja, with Tempranillo and Viura as controls. The objective was to correlate agronomic performance and disease incidence with the presence of disease resistance genes in two different seasons: with (2023) and without disease pressure (2022).

Global geo changes, including climate: viticulture result on new viticulture-viticolture in a territory both further north of the region and at high altitude

Context and purpose of the study. In relation to global geo changes, including climatic ones, the following research has been conducted: 1. In Europe’s highest vineyard (1395 m.a.s.l.) (Cargnello, 2014÷2021; Cargnello & Col. 2019÷2021)

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.