terclim by ICS banner
IVES 9 IVES Conference Series 9 Sustainable fertilisation of the vineyard in Galicia (Spain)

Sustainable fertilisation of the vineyard in Galicia (Spain)

Abstract

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

María Dolores Loureiro Rodríguez1, Juan Carlos Vázquez Abal1, Javier José Cancela Barrio2, Daniel Durán Pereira3, María del Carmen Saborido Díaz1, Lucía Lloret Caulonga4, Carlos Alberte5 and Emilia Díaz Losada1 

1Axencia Galega da Calidada Alimentaria (AGACAL)-EVEGA. Leiro, Ourense, Spain
2Escola Politécnica Superior de Enxeñaría, Universidade de Santiago de Compostela, Lugo, Spain
3Sociedad Cooperativa Vitivinícola Arousana. Meaño, Pontevedra, Spain 
4FEUGA Fundación Empresa- Universidad Gallega. Santiago de Compostela, A Coruña 
5Vitivinícola del Ribeiro SCG. Ribadavia, Ourense, Spain

Contact the author

Keywords

fertilization, grapevine, TIC, soil, sustainability

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Perceptive interactions and wine typical fruity aroma 

In this study we developed a methodology to prepare aromatic reconstitutions from fractions of a wine organic extract and we assessed these reconstitutions both in wine model solution and in de- aromatized wine.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).

Application of remote sensing by unmanned aerial vehicles to map variability in Ontario Riesling and Cabernet Franc vineyards

The objective of this investigation was to verify usefulness of proximal sensing technology and unmanned aerial vehicles (UAVs) for mapping variables e.g., vine size (potential vigor), soil and vine water status, yield, fruit composition, and virus incidence in vineyards.