terclim by ICS banner
IVES 9 IVES Conference Series 9 Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

Abstract

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Lira Souza Gonzaga1, Lukas Danner2, Keren Bindon3, John Gledhill4, Annette James1, Cassandra Collins1,7, Marcos Bonada5, Paul Petrie5,6, and Susan Bastian1,7

1School of Agriculture Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide, Australia 
2CSIRO, Werribee, Australia 
3The Australian Wine Research Institute, Adelaide, Australia 
4WIC Winemaking Services, Adelaide, Australia 
5South Australian Research and Development Institute, Adelaide, Australia 
6The University of New South Wales, Sydney New South Wales, Australia 
7ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute, Adelaide, Australia 

Contact the author

Keywords

regionality, clustering analysis, descriptive analysis, typicity, red wine

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Can wine composition predict quality? A metabolomics approach to assessing Pinot noir wine quality as rated by experts

The perception of wine quality is determined by the assessment of multiple sensory stimuli, including aroma, taste, mouthfeel and visual aspects. With so many different parameters contributing to the overall perception of wine quality, it is important to consider the contribution of all metabolites in a wine when attempting to relate composition to quality.

Rapid quantification of higher alcohols in wine, port wine and brandy by HS-GC-FID

In response to the growing demand for rapid, precise, and efficient methods of quantifying volatile compounds in alcoholic beverages, this study presents a novel approach for the determination of higher alcohols in wine, port wine, and brandy.

The effect of cropload on the volatile aroma characteristics of ‘Beihong’ and ‘Beimei’ red wine

Beihong and Beimei were bred as winemaking cultivars released by Institute of Botany, the Chinese Academy of Sciences in 2008. The cultivars are selected from the population of ‘Muscat Hamburg’ (Vitis vinifera) ×V. amurensis. They are extended to most provinces in North of China because they have strong resistance to cold and disease and need not be buried in soil in winter. To better understand the effect of cropload on volatile compounds during wine-making, we surveyed volatiles composition and content of different cropload level in 3-years-old ‘Beihong’ and ‘Beimei’ vines which planted in east foot of Helan mountain of Ningxia (EHN).

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.