terclim by ICS banner
IVES 9 IVES Conference Series 9 Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Abstract

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Max W. Spencer1, Katherine L. Shek1, Kyle Meyer2, Jeremy Weisz3, Greg Jones4 and Krista L. McGuire1

1Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA 
2Department of Integrative Biology, University of California, Berkley, California, USA
3Department of Wine Studies, Linfield College, McMinnville, Oregon, USA
4Abacela Winery, Roseburg, Oregon, USA

Contact the author

Keywords

microbe, yeast, fermentation, terroir, metabolite

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

Valuation of the fields viti-vinicoles by the landscapes

La prise en compte des paysages viticoles dans le développement durable ou l’aménagement du territoire est un thème non négligeable pour la valorisation de la filière viti-vinicole à l’échelle d’une exploitation ou d’une A.O.C.

The evolution of italian vine nursery production over the past 30 years

Italy has a long history of viticulture and has become one of the world’s leading producers of vine propagation material. The Italian vine nursery industry is today highly qualified and has become highly competitive on a global scale. The quality of the material is guaranteed by compliance with European Union regulations, which have been in force since the second half of the 20th century and have subsequently been supplemented and updated.

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.