Macrowine 2021
IVES 9 IVES Conference Series 9 Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Abstract

AIM: In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine, in particular of Sangiovese wine.

METHODS: The impact of simultaneous and sequential inoculations on growth and fermentation kinetics and on the analytical and sensory profiles of the experimental wines was evaluated at the end of the alcoholic fermentation and 24 months after bottling with standard methods.

RESULTS: S. japonicus affected S. cerevisiae growth and fermentative capability only in the sequential fermentation. The experimental wines produced with S. japonicus and S.cerevisiae in simultaneous and sequential mixed fermentation reached concentrations of total polysaccharides respectively two- and three-fold greater than those obtained with pure cultures of S.cerevisiae. Moreover, the non-Saccharomyces yeast modulated the concentration of some of the most important wine volatile compounds. At the end of the alcoholic fermentation, ethyl acetate was significantly higher in the mixed fermentation wines in respect to the level acceptable for a young red wine. However, this metabolite underwent considerable hydrolysis during the two-years aging in bottle, with a marked decrease in its concentration. In agreement, mixed fermentation wines as compared to the control wines showed no significant differences for the ethyl acetate perception evaluated by sensory analysis carried out 24 months after bottling. Hydrolysis–esterification equilibrium in mixed fermentation wines caused an increase of acetate esters compounds responsible for fruity aroma. These ester compounds reached significantly higher concentrations in both mixed fermentation wines than in the control wine inoculated with S. cerevisiae. Moreover, all mixed fermentation wines were perceived as having lower mouthfeel sensation of astringency compared to those obtained with S. cerevisiae, possibly due to the higher polysaccharides content.

CONCLUSIONS

Based on the evidence that after 2 years of aging, mixed fermentation wines presented an increase in color stability and the concentration of fruity aroma and a decrease in astringency, the combined utilization of Sch. japonicus and S. cerevisiae might represent an innovation for the improvement of the aging stability of Sangiovese wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paola Domizio

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo Portaro, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Livio Lencioni, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Ilaria Mannazzu, Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari (Italy)

Contact the author

Keywords

wine stability, wine aging, wine aroma, schizosaccharomyces japonicus, mixed fermentation

Citation

Related articles…

Olfactometry approach to assess odorant compounds of grape spirits used for Port wine production-first results

The production of Port Wine requires the addition of grape spirit to stop the fermentation, ensuring the desired sweetness

The aroma diversity of italian white wines

AIM: Aroma is a key contributor to white wines sensory typicality, perceived diversity and overall preference.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

Do wine sulphites affect gut microbiota? An in vitro study of their digestion in the gastrointestinal tract

“Sulphites” and mainly sulphur dioxide (SO2) is by far the most widely used additive (E-220/INS 220) in winemaking and likely the most difficult to replace. The well-known antioxidant, antioxidasic and antimicrobial properties of SO2 make this molecule a practically essential tool, not only in winemaking, but also in the production of other food products. The current trend in winemaking is the reduction of this unfriendly additive due to its negative effects on health and environmental. In particular, it could cause headaches and intolerance/allergic reactions in sensitive individuals. Wine is considered one of the major contributors of exposure of SO2 in the adult population, when this beverage is included in the diet.