terclim by ICS banner
IVES 9 IVES Conference Series 9 Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

Elucidating vineyard site contributions to key sensory molecules: Identification of correlations between elemental composition and volatile aroma profile of site-specific Pinot noir wines

Abstract

The reproducibility of elemental profile in wines produced across multiple vintages has been previously reported using grapes from a single scion clone of Vitis vinifera L. cv. Pinot noir.  The grapevines were grown on fourteen different vineyard sites, from Oregon to southern California in the U.S.A., which span distances from approximately hundreds of meters to 1450 km, while elevations range from near sea level to nearly 500 m. In addition, sensorial (i.e. aroma, taste, and mouthfeel) and chemical (i.e. polyphenolic and volatile) differences across the different vineyard sites have also been observed among these wines at two aging time points. While strong evidence exists to support that grapes grown in different regions can produce wines with unique chemical and sensorial profiles, even when a single clone is used, the understanding of growing site characteristics that result in this reproducible differentiation continues to emerge. One hypothesis is that the elemental profile that a vineyard site imparts to the grape berries and the resulting wine is an important contributor to this differentiation in chemistry and sensory of wines. For example, various classes of enzymes that catalyze the formation of key aroma compounds or their precursors require specific metals. In this work, we begin to report correlations between elemental and volatile aroma profiles of site-specific Pinot noir wines, made under standardized winemaking conditions, that have been previously shown to be distinguished separately by these chemical analyses.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Maisa M.M. Lima1 and Ron C. Runnebaum1,2

1Department of Viticulture & Enology, University of California, Davis, USA
2Department of Chemical Engineering, University of California, Davis, USA

Contact the author

Keywords

GC-MS, ICP-MS, terroir

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

Towards a sustainable winery: revalorization of green CO2 for methane production

The FUELPHORIA project explores innovative pathways for sustainable energy production, with DEMO 2 focused on transforming winery-derived CO₂ into methane (CH₄) using renewable hydrogen (H₂).

Defining the terroir of the Columbia gorge wine region, Oregon and Washington, USA using geographic information systems (GIS)

The Columbia Gorge Wine Region (CGWR) extends for about 100km along the Columbia River and includes the Columbia Gorge American Viticultural Area (AVA) and the southwest portion of the Columbia Valley AVA.

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies.

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines.