terclim by ICS banner
IVES 9 IVES Conference Series 9 Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

Abstract

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA Protect), against this problem in Cabernet Sauvignon must.  The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid.  This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Andrew Davey1, Thomas Houghton2, Andrea Manzotti3 and Duncan Hamm4

1,2Melbourne Polytechnic, Melbourne, Australia 
3,4Chr. Hansen A/S, Hørsholm, Denmark

Contact the author

Keywords

bioprotection ability, qPCR, Lactiplantibacillus plantarum, wine fermentation, Oenococcus oeni

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Effect of cytokinin and auxin application on double cropping performance in Vitis vinifera: preliminary findings

Double cropping is a novel technique, driven by the extension of the growing season caused by global warming.

Function, barriers, and the environmental benefits of reuse bottle system for wine

With 0.3 to 0.7 kg CO2eq per 0.75 L wine, the glass bottle is the main contributor to the carbon footprint of a bottle of wine.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Within-vineyard variability in grape composition at the estate scale can be assessed through machine-learning modeling of plant water status in space and time. A case study from the hills of Adelaida District AVA, Paso Robles, CA, USA

Aim: Through machine-learning modelling of plant water status from environmental characteristics, this work aims to develop a model able to predict grape phenolic composition in space and time to guide selective harvest decisions at the estate scale.

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.