terclim by ICS banner
IVES 9 IVES Conference Series 9 INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Abstract

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated. The film types varied in their chitosan and/or β-cyclodextrin composition. Film coatings were applied at veraison in vineyards in the Rogue Valley and Willamette Valley. The Rogue Valley experienced two smoke events during the season from wildfires in California. The grapes from Willamette Valley experience heavy smoke exposure using designed smoke cages. At harvest, half of the grapes were washed to remove the films. This was to determine if smoke phenols were blocked or bound to the film coatings. Further analysis of the interaction of smoke phenols with film coatings was done by observing any volatile phenol diffusion through the film using a custom-made polytetrafluoroethylene apparatus. Free and bound smoke phenols in grape juice were analyzed using GCMS and smoke glycosides using LCMS³. Results show some of the film coatings were effective in reducing the amount of smoke compounds absorbed into the grapes, primarily guaiacol, 4-methyl guaiacol, syringol and 4-methyl syringol. The cresol compounds were not greatly impacted. The collective results of this study show promise for film coatings as an effective preventative technique for grape smoke exposure. Optimization of the film coating formulation will lead to the reduction in smoke sensory characteristics in wine and ultimately diminish the loss of product.

 

1. McKay, M., Bauer, F., Panzeri, V., Mokwena, L., & Buica, A.S. (2019). Potentially smoke tainted red wines: volatile phenols and aroma attributes. South African Journal of Enology and Viticulture, 40(2).
2. Tran, T.T., Jung, J., Garcia, L., Deshields, J.B., Cerrato, D.C., Penner, M.H., Tomasino, E., Levin, A.D., & Zhao, Y.(2023). Impact of functional spray coatings on smoke volatile phenol compounds and Pinot noir grape growth. Journal of Food Science, 88, 367– 380. 
3. Liu, Z., Ezernieks, V., Reddy, P., Elkins, A., Krill, C., Murphy, K., Rochfort, S., Spangenberg, G. (2020). A simple GC-MS/MS method for determination of smoke taint-related volatile phenols in grapes. Metabolites, 10(7), 294.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

L. Garcia¹, T. Tran¹, J. Jung², J.B. DeShields³, D.C. Cerrato², M.H. Penner⁴, A.D. Levin⁵, Y. Zhao⁶ and E. Tomasino⁴,*

1. Graduate research Assistant, Food Science & Technology, OSU, Corvallis, OR,
2. Assistant Professor Senior Research Associate, Food Science & Technology, OSU, Corvallis, OR,
3. Faculty Research Assistant, Department of Horticulture, Southern Oregon Research Center, OSU, Central Point, OR,
4. Associate Professor, Food Science & Technology, OSU, Corvallis, OR,
5. Associate Professor, Department of Horticulture, Southern Oregon Research and Extension, Central Point, OR,
6. Professor, Food Science & Technology, OSU, Corvallis, OR

Contact the author*

Keywords

smoke, remediation, film, phenol

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

ADDITION OF OAK WOOD ALTERNATIVE PRODUCTS: QUALITATIVE AND SENSORIAL EFFECTS FOR A WHITE WINE OF ALIGOTE

Wines matured in contact with wood are extremely popular with consumers all over the world. Oak wood allows the organoleptic characteristics of wine to be modified. Wines are enriched with volatile and non-volatile compounds extracted from the wood. The aromas extracted from oak wood contribute to the construction of the wine’s aromatic profile and the main polyphenols extracted can modify taste perceptions such as astringency and bitterness. All the compounds extracted from the wood thus contribute to the balance and quality of the wines.