terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Abstract

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Christoph Patauner, Alex Tavernar and Eva Überegger

Laimburg Research Centre, Alto Adige, Italy 

Contact the author

Keywords

aroma intensity of wine, phenolic maturity, yeast derivatives

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Characterization of vine performance using remote sensing tools

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.

Carbon footprint in Austrian viticulture – Evaluation of the main polluters and possible solutions in entire the production chain

The sustainability certification ‘nachhaltig austria’ (www.sustainableaustria.com) has been offered to austrian wineries in an online version for 10 years and over 25% of the austrian wine-growing area is now certified. Since the 2022 harvest, ‘nachhaltig austria’ has automatically calculated the carbon footprint for each winery, per hectare of vineyard, per litre of bulk wine and per 0.75-litre bottle (poelz, w. And rosner, f.g. 2023). In last year’s publications and numerous presentations at national and international level, topics such as refilling glass bottles, lightweight glass bottles, renewable energy, … Etc.

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.