terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Abstract

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Christoph Patauner, Alex Tavernar and Eva Überegger

Laimburg Research Centre, Alto Adige, Italy 

Contact the author

Keywords

aroma intensity of wine, phenolic maturity, yeast derivatives

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

«Observatoire Mourvèdre»: (2) climatic mapping for successful plantation of Cv. Mourvèdre

A statistical model of sugar potential for Mourvèdre grapevine cultivar has been obtained using a group of 32 plots all around de south-east french mediterranean area.

Management of grapevine water status with the DSS Vintel® provides evidence of sustainable irrigation strategies while maintaining wine quality of Pinot gris in Friuli-Venezia Giulia region, NE italy

Deficit irrigation strategies can be valuable means to improve grape quality while saving important amounts of water. A simple way to use deficit irrigation can be based on irrigating a vineyard with a determined level of crop evapotranspiration. Using a precise physiological parameter indicating water status, irrigation could be managed to maintain a specific pre-dawn leaf water potential.

Illuminating vineyard management: Elevating operational efficiency through advanced sensing and data analytics

In this video recording of the IVES science meeting 2024, Luca Brillante (California State University, Fresno, USA) speaks about vineyard management, advanced sensing and data analytics. This presentation is based on an original article accessible for free on OENO One.

On sample preparation methods for fermentative beverage VOCs profiling by GCxGC-TOFMS

Study the influence of sample preparation methods on the volatile organic compounds (VOCs) profiling for fermentative beverages by GCxGC-TOFMS analysis. METHODS: Five common sample preparation methods were tested on pooled red wine, white wine, cider, and beer. Studied methods were DHS, Liquid-liquid extraction, mSBSE, SPE and SPME. VOCs were analyzed by GCxGC-TOFMS followed by data analysis with ChromaTOF. RESULTS: The volatile organic compounds (VOCs) profiling results were very dependent on the sample preparation methods.