terclim by ICS banner
IVES 9 IVES Conference Series 9 ‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

‘Cabernet Sauvignon’ (Vitis vinifera L.) berry skin flavonol and anthocyanin composition is affected by trellis systems and applied water amounts

Abstract

Trellis systems are selected in wine grape vineyards to mainly maximize vineyard yield and maintain berry quality. This study was conducted in 2020 and 2021 to evaluate six commonly utilized trellis systems including a vertical shoot positioning (VSP), two relaxed VSPs (VSP60 and VSP80), a single high wire (SH), a high quadrilateral (HQ), and a guyot (GY), combined with three levels of irrigation regimes based on different crop evapotranspiration (ETc) replacements, including a 25% ETc, 50% ETc, and 100% ETc. The results indicated SH yielded the most fruits and accumulated the most total soluble solids (TSS) at harvest in 2020, however, it showed the lowest TSS in the second season. In 2020, SH and HQ showed higher concentrations in most of the anthocyanin derivatives compared to the VSPs. Similar comparisons were noticed in 2021 as well. SH and HQ also accumulated more flavonols in both years compared to other trellis systems. Overall, this study provides information on the efficacy of trellis systems on grapevine yield and berry flavonoid accumulation in a currently warming climate. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Justin D. Tanner1, Runze Yu1,2, Nazareth Torres1,3, Sean M. Kacur1,4, Lauren E. Marigliano1, Maria Zumkeller1, Joseph Chris Gilmer1, Gregory A. Gambetta4, Sahap Kaan Kurtural1,* 

1Department of Viticulture and Enology, University of California, Davis, 1 Shield Avenue, Davis, CA, 95616, USA
2Formal post-doctoral scholar. Current address: Department of Viticulture and Enology, California State University, Fresno, 2360 E. Barstow Avenue, 2360 E. Barstow Ave. M/S VR 89, Fresno, CA, 93740, USA
3Formal post-doctoral scholar. Current address: Advanced Fruit and Grape Growing Group, Public University of Navarra, 31006 Pamplona, Spain
4EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon, France

Contact the author

Keywords

anthocyanins, flavonols, trellis systems, water deficits, viticulture 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Influence of different strains of lab on quality of catarratto wine produced in sicily

AIM: Lactiplantibacillus plantarum and Oenococcus oeni species is worldwide used as starter for malolactic fermentation [1, 2].

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.