Macrowine 2021
IVES 9 IVES Conference Series 9 Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)


AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location. The aim of this study was to compare the quality of Merlot wines produced from grapes growing on skeletal and dry soils of terraced vineyards and deep loamy soils of alluvial plains of Vipava Valley, a warm climate winegrowing district in Slovenia.

METHODS: Five vineyards on terraces and five on alluvium plains were chosen. Viticulture parameters such as number of buds, number of clusters and leaf area on each vine were unified in 2019 and 2020 as described in Sivilotti et al. (2020). Stem water potential (SWP) was measured during the season (Deloire and Heyns, 2011). 5 kg of grapes were sampled in triplicates at the time of grape maturity. Basic physicochemical parameters of grapes were determined before microvinification. Microvinifications were analysed after alcoholic and malolactic fermentation. Concentration of total phenols (TP), total anthocyanins (TA), high (HMWP) and low molecular weight (LMWP) proanthocyanidins (PAS) were determined spectrophotometrically as described in Rigo et al. (2000). Moreover, structural characteristics of PAs in wines, i.e. mean degree of polymerisation (mDP), percentage of galloylaton (%G) and percentage of prodelphinidins (%P) were determined by UHPLC-DAD-MS/MS as described in Lisjak et al. (2019) and in Sivilotti et al. (2020). Esters were analysed by GC-MS (Bavčar and Baša Česnik, 2011) and higher alcohols by GC-FID (Bavčar et al., 2011).

RESULTS: SWP was more negative on terraces. According to basic physico chemical parameters and darker seed colour, grapes from terraces showed advanced ripening in comparison to grapes grown in alluvial plains. Wines from terraces had higher concentrations of TA, TP, HMWP, ash and total dry extract in comparison to wines from alluvial plains and PAs reported higher %G. Furthermore, aromatic profiles of wines were also different. In general, higher concentrations of higher alcohols and lower concentrations of esters were detected in wines from terraces.


 The Merlot wines from grapes sampled in terraced vineyards differed in chemical composition from those from alluvial plains. In general, wines from terraces had higher polyphenol content, some quality parameters such as ash and total dry extract, structural differences of grape tannins and different profile of some aroma compounds


Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article


Alenka Mihelčič

Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia ,Andreja VANZO, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Borut VRŠČAJ, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Paolo SIVILOTTI, University of Udine, via delle Scienze 206, 33100 Udine, Italy Klemen LISJAK, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia

Contact the author


terraces, alluvial plains, soil, stem water potential, wine quality, polyphenols, volatile compounds


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.