terclim by ICS banner
IVES 9 IVES Conference Series 9 Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Abstract

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Authors

Type: Article

Luis Gonzaga Santesteban1* 

1 Dpt Agronomy, Biotechnology & Food Science, Public University of Navarre, 31006 Pamplona, Spain 
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), 31006 Pamplona, Spain 

Keywords

leaf removal, shoot trimming, global warming, carbohydrates 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Evaluation of clonal variability of phenolic compounds in Vitis vinifera L. cv. Trnjak crni grown in Croatia

Context and purpose of the study. Croatia has rich grapevine genetic resources with more than 130 native varieties preserved.

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

Evaluation of viticultural measures to delay ripening of Vitis vinifera ‘Grüner Veltliner’

Context and purpose of the study. `Grüner Veltliner´ is the most important Austrian white quality wine variety, which is mainly used to produce primary fruity wines.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.