terclim by ICS banner
IVES 9 IVES Conference Series 9 Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Abstract

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Authors

Type: Article

Luis Gonzaga Santesteban1* 

1 Dpt Agronomy, Biotechnology & Food Science, Public University of Navarre, 31006 Pamplona, Spain 
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), 31006 Pamplona, Spain 

Keywords

leaf removal, shoot trimming, global warming, carbohydrates 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season.

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Vacuum distillation of Muscaris pomace: temperature effects on aroma composition

The consumption of wine in traditional wine-producing countries like Italy, Spain, and France is decreasing.

Anthocyanin content and composition of Merlot grapes under temperature and late pruning conditions 

One of the main aspects of Climate Change is the increase of temperatures during summer and grape maturity period. Physiological processes are influenced by these high temperatures and result in grapes with higher sugar concentration, less acidity and less anthocyanin content among other quality changes. One strategy to deal with the climate change effects is the implementation of late winter pruning to alter the effect of high temperatures during key periods by delays in maturity time.

Volatile composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Cabernet Sauvignon is one of the most cultivated grape varieties worldwide being grown in different environmental conditions due to its excellent adaptability. Volatile compounds deeply contribute to the sensory properties of wines therefore to wine quality. The aim of this work was to compare the aroma profile of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain, from the vintage 2022. In addition, the volatile composition of the Cabernet Sauvignon Portuguese wines from three vintages was evaluated.