terclim by ICS banner
IVES 9 IVES Conference Series 9 Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Abstract

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended. 

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Authors

Type: Article

Luis Gonzaga Santesteban1* 

1 Dpt Agronomy, Biotechnology & Food Science, Public University of Navarre, 31006 Pamplona, Spain 
2 Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), 31006 Pamplona, Spain 

Keywords

leaf removal, shoot trimming, global warming, carbohydrates 

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

VitiCanopy to measure vine pruning mass and assess above ground vineyard carbon storage

The wine industry is increasingly focused on carbon accounting due to consumer’s demand and the industry’s goal of reducing carbon emissions.

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Oak wood influence on the organoleptic perception of red wine

Some wood substances such as ellagitannins (vescalagin, castalagin, grandinin, roburins (A, B, C, D, E)…) can be extracted during wine ageing in oak barrels. The level of these hydrolysable tannins in wine depends of the species and origin of oak wood as well as its treatment during barrel realization.