WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Abstract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

Functioning under computer control of the physicochemical parameters, simgi® system is able to simulate separately or continuously the steps of gastric, intestinal digestion and colonic fermentation. In particular, this modular configuration has allowed the simulation of gastrointestinal digestions of red wine [1] or soluble grape extracts [2], and gastrointestinal survival of probiotic enological yeasts [3], as well as the evaluation of the food matrix effect when wine and its active compounds are ingested in combination with proteins, lipids or sugars. 

The physiological conditions of the ascending, transverse and descending regions of the colon are reproduced sequentially and include the human microbial intestinal community what makes able to study the interaction between gut microbiota and polyphenols. Part of simgi® simulation studies have been carried out with wine and winery by-products using healthy [2] and diabetic microbiota. Furthermore, the dynamic operation of simgi® system made it feasible to simulate a chronic intake (14 days) of a red grape pomace extract in combination with a probiotic strain of Lactobacillus plantarum, to assess the reciprocal benefits between polyphenols and probiotics on the growth and functionality of colonic microbiota [4]. Simgi® system is also an exclusive tool to carry out avant-garde products of interest in the wine industry, for example, antimicrobial silver nanoparticles [5] and microplastics which food safety is yet to be determined. Simgi® platform (www.cial.uam-csic.es/simgi/) proposes solutions to complex challenges to effectively support research and food industry development by acting as a complement and/or as a previous step to human studies, given their ethical and economic restrictions.

[1] Cueva et al., Food Res Int. 2015; 72: 149-59
[2] Gil-Sánchez et al., J Food Compost Anal. 2018; 68: 41–52  
[3] Fernández-Pacheco et al., Food Funct. 2019; 10: 4924-31
[4] Gil-Sánchez et al., Food Res Int. 2020; 129: 108790
[5] Cueva et al., Food Chem. Toxicol. 2019; 132: 110657

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Alba, Tamargo, Natalia, Molinero, Carolina, Cueva, Begoña, Bartolomé, Moreno-Arribas

Presenting author

Alba, Tamargo – M. Victoria, Moreno-Arribas

Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, M. Victoria | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, , 

Contact the author

Keywords

wine, simgi®, gut microbiota, digestion, metabolism

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Bioprotection of grape must by Metschnikowia sp.: genericity and mechanism

The market trend heads to food products with less chemical inputs, including in oenology. During the winemaking process, sulfites are commonly use to avoid microbiological contamination and stabilization of the wine thanks to its antimicrobial and antioxidant activities. Nevertheless, this use is not without consequences on human health and environment, leading for example to allergic reaction and pollution. A biological alternative to these sulfites has emerges: the bioprotection.

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.