WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Abstract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

Functioning under computer control of the physicochemical parameters, simgi® system is able to simulate separately or continuously the steps of gastric, intestinal digestion and colonic fermentation. In particular, this modular configuration has allowed the simulation of gastrointestinal digestions of red wine [1] or soluble grape extracts [2], and gastrointestinal survival of probiotic enological yeasts [3], as well as the evaluation of the food matrix effect when wine and its active compounds are ingested in combination with proteins, lipids or sugars. 

The physiological conditions of the ascending, transverse and descending regions of the colon are reproduced sequentially and include the human microbial intestinal community what makes able to study the interaction between gut microbiota and polyphenols. Part of simgi® simulation studies have been carried out with wine and winery by-products using healthy [2] and diabetic microbiota. Furthermore, the dynamic operation of simgi® system made it feasible to simulate a chronic intake (14 days) of a red grape pomace extract in combination with a probiotic strain of Lactobacillus plantarum, to assess the reciprocal benefits between polyphenols and probiotics on the growth and functionality of colonic microbiota [4]. Simgi® system is also an exclusive tool to carry out avant-garde products of interest in the wine industry, for example, antimicrobial silver nanoparticles [5] and microplastics which food safety is yet to be determined. Simgi® platform (www.cial.uam-csic.es/simgi/) proposes solutions to complex challenges to effectively support research and food industry development by acting as a complement and/or as a previous step to human studies, given their ethical and economic restrictions.

[1] Cueva et al., Food Res Int. 2015; 72: 149-59
[2] Gil-Sánchez et al., J Food Compost Anal. 2018; 68: 41–52  
[3] Fernández-Pacheco et al., Food Funct. 2019; 10: 4924-31
[4] Gil-Sánchez et al., Food Res Int. 2020; 129: 108790
[5] Cueva et al., Food Chem. Toxicol. 2019; 132: 110657

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Alba, Tamargo, Natalia, Molinero, Carolina, Cueva, Begoña, Bartolomé, Moreno-Arribas

Presenting author

Alba, Tamargo – M. Victoria, Moreno-Arribas

Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, M. Victoria | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, , 

Contact the author

Keywords

wine, simgi®, gut microbiota, digestion, metabolism

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

White wine lees: unlocking the relationship between chemical composition and antioxidant potential

The wine-making process generates numerous by-products at each stage (crushing, fermentation, ageing), including wine lees, which account for almost 25% of the total quantity.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.

Quantification of Eugenol in various matrixes from hybrids vines. Case study of Armagnac white spirits production

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.