WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Abstract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

Functioning under computer control of the physicochemical parameters, simgi® system is able to simulate separately or continuously the steps of gastric, intestinal digestion and colonic fermentation. In particular, this modular configuration has allowed the simulation of gastrointestinal digestions of red wine [1] or soluble grape extracts [2], and gastrointestinal survival of probiotic enological yeasts [3], as well as the evaluation of the food matrix effect when wine and its active compounds are ingested in combination with proteins, lipids or sugars. 

The physiological conditions of the ascending, transverse and descending regions of the colon are reproduced sequentially and include the human microbial intestinal community what makes able to study the interaction between gut microbiota and polyphenols. Part of simgi® simulation studies have been carried out with wine and winery by-products using healthy [2] and diabetic microbiota. Furthermore, the dynamic operation of simgi® system made it feasible to simulate a chronic intake (14 days) of a red grape pomace extract in combination with a probiotic strain of Lactobacillus plantarum, to assess the reciprocal benefits between polyphenols and probiotics on the growth and functionality of colonic microbiota [4]. Simgi® system is also an exclusive tool to carry out avant-garde products of interest in the wine industry, for example, antimicrobial silver nanoparticles [5] and microplastics which food safety is yet to be determined. Simgi® platform (www.cial.uam-csic.es/simgi/) proposes solutions to complex challenges to effectively support research and food industry development by acting as a complement and/or as a previous step to human studies, given their ethical and economic restrictions.

[1] Cueva et al., Food Res Int. 2015; 72: 149-59
[2] Gil-Sánchez et al., J Food Compost Anal. 2018; 68: 41–52  
[3] Fernández-Pacheco et al., Food Funct. 2019; 10: 4924-31
[4] Gil-Sánchez et al., Food Res Int. 2020; 129: 108790
[5] Cueva et al., Food Chem. Toxicol. 2019; 132: 110657

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Alba, Tamargo, Natalia, Molinero, Carolina, Cueva, Begoña, Bartolomé, Moreno-Arribas

Presenting author

Alba, Tamargo – M. Victoria, Moreno-Arribas

Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, M. Victoria | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, , 

Contact the author

Keywords

wine, simgi®, gut microbiota, digestion, metabolism

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS)

 The manipulation of the genetic basis controlling grapevine adaptation and phenotypic plasticity can be performed either by classical genetics or biotechnologies.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Aging in amphorae with different porosity for sustainable production of Nero d’Avola wine

In recent years, the use of amphorae in winemaking has become more frequent, symbolizing a return to the origins of vinification to broaden the availability of wines with different style.