WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 4 - WAC - Oral presentations 9 Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Simgi® platform as a tool for the study of wine active compounds in the  gastrointestinal tract

Abstract

Simgi® platform pursues the need for dynamic in vitro simulation of the human gastrointestinal tract optimized and adapted to food safety and health fields. The platform has confirmed the model’s suitability since its first’s studies with the consistency between the simulated colonic metabolism of wine polyphenols and the metabolic evolution observed with the intake of wine in human intervention studies [1]. 

Functioning under computer control of the physicochemical parameters, simgi® system is able to simulate separately or continuously the steps of gastric, intestinal digestion and colonic fermentation. In particular, this modular configuration has allowed the simulation of gastrointestinal digestions of red wine [1] or soluble grape extracts [2], and gastrointestinal survival of probiotic enological yeasts [3], as well as the evaluation of the food matrix effect when wine and its active compounds are ingested in combination with proteins, lipids or sugars. 

The physiological conditions of the ascending, transverse and descending regions of the colon are reproduced sequentially and include the human microbial intestinal community what makes able to study the interaction between gut microbiota and polyphenols. Part of simgi® simulation studies have been carried out with wine and winery by-products using healthy [2] and diabetic microbiota. Furthermore, the dynamic operation of simgi® system made it feasible to simulate a chronic intake (14 days) of a red grape pomace extract in combination with a probiotic strain of Lactobacillus plantarum, to assess the reciprocal benefits between polyphenols and probiotics on the growth and functionality of colonic microbiota [4]. Simgi® system is also an exclusive tool to carry out avant-garde products of interest in the wine industry, for example, antimicrobial silver nanoparticles [5] and microplastics which food safety is yet to be determined. Simgi® platform (www.cial.uam-csic.es/simgi/) proposes solutions to complex challenges to effectively support research and food industry development by acting as a complement and/or as a previous step to human studies, given their ethical and economic restrictions.

[1] Cueva et al., Food Res Int. 2015; 72: 149-59
[2] Gil-Sánchez et al., J Food Compost Anal. 2018; 68: 41–52  
[3] Fernández-Pacheco et al., Food Funct. 2019; 10: 4924-31
[4] Gil-Sánchez et al., Food Res Int. 2020; 129: 108790
[5] Cueva et al., Food Chem. Toxicol. 2019; 132: 110657

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Alba, Tamargo, Natalia, Molinero, Carolina, Cueva, Begoña, Bartolomé, Moreno-Arribas

Presenting author

Alba, Tamargo – M. Victoria, Moreno-Arribas

Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, M. Victoria | Institute of Food Science Research, CIAL, (CSIC-UAM), C/ Nicolás Cabrera 9.  28049, Madrid, Spain, , 

Contact the author

Keywords

wine, simgi®, gut microbiota, digestion, metabolism

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Mitigating the effects of climate change on berry composition by canopy management

Primary and secondary metabolites are major components of grape composition and their balances define wine typicality

First application of an original methodology created to overcome conflicts between stakeholders in an important wine-growing territory: methodology, results, and perspectives in the application of sustainability EME4.1C

Considering the previous research and activities, also, on Sustainability EME4.1C which, as widely known, considers in a harmonious chain all the factors material, immaterial, moral and spiritual related to all aspects environmental, economic, social, existential, relational, ethical, technical and “MetaEthic” indexed 4.1C

La perception des terroirs du vignoble des Coteaux du Layon

On peut être surpris de l’existence d’un vignoble de vins liquoreux, le vignoble des Coteaux du Layon, dans une zone septentrionale à la limite Nord de la culture de qualité de la vigne et ce d’autant plus que le cépage de ce vignoble, le Chenin ou Pineau de la Loire, est un cépage semi tardif. La première explication est à rechercher au niveau des facteurs naturels (données climatiques et géopédologiques) permettant la réalisation de ce type de produit. Il est nécessaire de souligner ici l’importance de chaque paramètre du terroir pris dans im sens large (géopédologique et climatique) et que toute variation de l’un d’entre eux, même non perceptible en première analyse à l’homme, peut avoir des incidences déterminantes sur la qualité des vins.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna