IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

UHPLC-HRMS analysis for the evaluation of formation and degradation of polysulfides in wine 

Abstract

The contribution of sulfur compounds to wine aroma has been studied for several years, as their role can be either positive, contributing to the fruitiness and typicity of some white wines like Sauvignon blanc, or negative when related to off-flavours caused by H2S. Recently, H2S formation from degradation of polysulfides has gained interest in the wine sector as it could potentially lead to wine defects or quality reduction (1). It has been proposed that polysulfides can be formed upon oxidation of thiol compounds (for example glutathione and cysteine) with Cu2+ or elemental sulfur and could form a reservoir for H2S release post-bottling (2,3,4). Polysulfide formation has been demonstrated in several matrices including real wines (5,6,7), but the exact reaction mechanisms have not been proven yet. It has been suggested that both chemical and biochemical activities can play a role (8), which is a topic that is still under investigation.
In the present work we investigated the possible technological factors that could influence the formation of polysulfides. Furthermore, we proposed a new method using both liquid chromatography with mass spectrometry and parallel ion chromatography in order to study the degradation of single polysulfides and the formation of H2S, respectively.

METHODS
For the study we used ultra-high-performance liquid chromatography (UHPLC) coupled to hybrid quadrupole/high-resolution mass spectrometry (HRMS, Q-Orbitrap) for the detection, characterisation and accumulation of polysulfides. For the study of polysulfide degradation UHPLC was used with an on-line fraction collector (UHPLC-FC) in order to isolate the single compounds. After collection the sampled compound was kept at 30°C to promote degradation and injections were performed until complete degradation. For the detection of H2S Ion Chromatography (IC) was used. For the technological studies, wines fortified with varietal thiols were treated with Cu2+ or Ag+ and subjected to accelerated aging and different musts were fermented with different oenological yeasts in single vinifications.

RESULTS
Using UHPLC-FC and subsequent UHPLC-HRMS it was possible to follow single polysulfide degradation in time. The technological studies revealed treatment effects of post-fermentation treatments with Cu2+ and Ag+ and significant differences were found in polysulfide profiles of wines fermented with different oenological yeasts. These studies gave new insides in the formation and degradation mechanisms of polysulfides, which is considered relevant with regard to potential alterations of wine quality

DOI:

Publication date: June 22, 2022

Issue: IVAS 2022

Type: Article

Authors

Dekker Susanne¹*, Nardin Tiziana¹, Fedrizzi Bruno², Van Leeuwen Katryna², Roman Tomas¹ and Larcher Roberto¹

¹FEM-IASMA Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele All’adige TN
²School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1142, New Zealand

Contact the author

Keywords

polysulfides, oxidation, UHPLC-HRMS, reductive odours

 

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The tolerance of grapevine rootstocks to water deficit is related to root morphology and xylem anatomy traits 

Climate change is altering water balances, thereby compromising water availability for crops. In grapevine, the strategic selection of genotypes more tolerant to soil water deficit can improve the resilience of the vineyard under this scenario. Previous studies demonstrated that root anatomical and morphological traits determine vine performance under water deficit conditions. Therefore, 13 ungrafted rootstock genotypes, 6 commercial (420 A, 41 B, Evex 13-5, Fercal, 140 Ru y 110 R), and 7 from new breeding programs (RG2, RG3, RG4, RG7, RG8, RG9 and RM2) were evaluated in pots during 2021 and 2022.

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Reviewing the geometry of terraces in the Douro region towards sustainable viticulture

The Douro demarcated region constitutes just over 50% of the area of mountain vineyard in the world, i.e., vineyards with slope gradients of 30% or above. Among the different (terraced) vineyard layouts, the formerly preferred wider terraces supporting two rows of vines and the currently advocated narrower single vine row, dominate the vineyards’ planting layout. The slope of these terraces, in other words, the supporting earth ramp, is a key element in these vineyards’ construction.

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.