Terroir 2010 banner
IVES 9 IVES Conference Series 9 applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini


Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses. The effectiveness of stable isotopes ratios (D/H)1, 13C/12C and 18O/16O to assess the geographical origin of wines is affected by the natural variability of these parameters. Their usefulness in wine origin identification improves when they are used jointly. (D/H)1 and 18O/16O ratios depend on latitude but, in the meantime, 18O/16O is noticeably modified by the meteorological course during grape ripening. The most powerful ratios to discriminate between regions are (D/H)1 and 18O/16O (Versini and Monetti, 1996). The isotopic and the sensory analyses together allowed to distinguish wines from different regions.


Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article


Bonello F., Cravero M.C., Tsolakis C., Ciambotti A.

CRA-ENO Centro di Ricerca per l’Enologia. Via P.Micca 35, 14100 Asti, Italia

Contact the author


NMR – IRMS – sensory analyses – traceability


IVES Conference Series | Terroir 2010


Related articles…

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral.

Comportement de différents clones de Sauvignon blanc dans certains terroirs viticoles du Friuli-Venezia Giulia (Nord-Est de l’Italie)

The worldwide reputation of Sauvignon Blanc has led technicians to ask themselves various questions about the cultivation of this variety: choice of the most suitable localities, the most effective agronomic strategies and the most appropriate wine-growing techniques, to bring out its particular aroma.

Elucidating contributions by vineyard site on volatile aroma characteristics of pinot noir wines

Correlations between vineyard site and wine have, historically, been limited due to lack of uniformity in scion and rootstock clone and lack of controlled pilot-scale winemaking conditions, particularly temperature

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.