IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Abstract

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin. These secondary metabolites are the aromatic precursors fraction of grape which is liberated in wine during fermentation. Knowledge of their profile is often required to estimate the aromatic potential transferable to the wine and for chemotaxonomic aims (Nasi et al., 2008; Ferreira and Lopez, 2019).

In general, the methods used to study glycosidic aroma profile involve sample extraction and concentration by passage of large volumes of must or grape extract through a SPE cartridge (the stationary phases commonly used are 1-10 g of C18 or polystyrene-divinylbenzene), then the methanolic fraction eluted containing the glycoside compounds is carried to dryness, resolubilized using a citrate pH 5 buffer, and an enzymatic hydrolysis is carried out overnight to liberate the aglycones which are then analyzed by GC/MS. Main advantage of SPE is until 1000-fold concentration of sample which allows to detect also compounds present at low level but which can play important role in determining the organoleptic characteristics of wine. Usually, the selectivity of SPE towards the compounds studied is low, so performing quantitation by expressing the compounds as mg internal standard/kg grape provides accuracy acceptable for the aim of the study. On the other hand, SPE is laborious, needs long time and is hardly applicable in quality control laboratories. SPME is faster but the selectivity of fiber towards the analytes is often very different and to perform acceptable quantitative analysis it is essential the calculation of calibration curves. Unfortunately, just few standards of the grape aroma compounds are commercially available (Panighel et al., 2014).

In this study SPE-GC/MS and SPME-GC/MS methods are compared by performing analysis of a set of model standard solutions and grape must samples. The use of several internal standards allows to estimate recoveries of the analytes and calculation of corrective coefficients between the two methods. To have also information free of enzymatic artifacts, GC/MS results are crossed with profile of glycosidic aroma precursors determined by LC/QTOF analysis (Flamini et al., 2014).

The study is finalized to develop a quick SPME-GC/MS method which provides exhaustive and reliable qualitative and semi-quantitative information on the grape glycosidic aroma precursors

References

Nasi A., Ferranti P., Amato S., Chianese L. (2008). Food Chem. 110: 762-768
Ferreira V., Lopez R. (2019). Biomolecules 9(12): 818- doi:10.3390/biom9120818
Panighel A., Flamini R. (2014). Molecules 19: 21291-21309 doi:10.3390/molecules191221291
Flamini R., De Rosso M., Panighel A., Dalla Vedova A., De Marchi F., Bavaresco L. (2014). J. Mass Spec. 49(12): 1214-1222 doi:10.1002/jms.34411214

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panighel Annarita¹, Fugaro Michele², Mazzei Raffaele Antonio², De Rosso Mirko¹, De Marchi Fabiola¹ and Flamini Riccardo¹

¹Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE)
²Dipartimento dell’Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari – ICQRF NORD-EST

Contact the author

Keywords

Glycosides, grape, aroma, mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.

Metabolomics of Vitis davidii Foëx. grapes from southern China: Flavonoids and volatiles reveal the flavor profiles of five spine grape varieties

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of these compounds highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and free norisprenoids (2.60 to 11.46 μg/kg FW).

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.