IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Abstract

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin. These secondary metabolites are the aromatic precursors fraction of grape which is liberated in wine during fermentation. Knowledge of their profile is often required to estimate the aromatic potential transferable to the wine and for chemotaxonomic aims (Nasi et al., 2008; Ferreira and Lopez, 2019).

In general, the methods used to study glycosidic aroma profile involve sample extraction and concentration by passage of large volumes of must or grape extract through a SPE cartridge (the stationary phases commonly used are 1-10 g of C18 or polystyrene-divinylbenzene), then the methanolic fraction eluted containing the glycoside compounds is carried to dryness, resolubilized using a citrate pH 5 buffer, and an enzymatic hydrolysis is carried out overnight to liberate the aglycones which are then analyzed by GC/MS. Main advantage of SPE is until 1000-fold concentration of sample which allows to detect also compounds present at low level but which can play important role in determining the organoleptic characteristics of wine. Usually, the selectivity of SPE towards the compounds studied is low, so performing quantitation by expressing the compounds as mg internal standard/kg grape provides accuracy acceptable for the aim of the study. On the other hand, SPE is laborious, needs long time and is hardly applicable in quality control laboratories. SPME is faster but the selectivity of fiber towards the analytes is often very different and to perform acceptable quantitative analysis it is essential the calculation of calibration curves. Unfortunately, just few standards of the grape aroma compounds are commercially available (Panighel et al., 2014).

In this study SPE-GC/MS and SPME-GC/MS methods are compared by performing analysis of a set of model standard solutions and grape must samples. The use of several internal standards allows to estimate recoveries of the analytes and calculation of corrective coefficients between the two methods. To have also information free of enzymatic artifacts, GC/MS results are crossed with profile of glycosidic aroma precursors determined by LC/QTOF analysis (Flamini et al., 2014).

The study is finalized to develop a quick SPME-GC/MS method which provides exhaustive and reliable qualitative and semi-quantitative information on the grape glycosidic aroma precursors

References

Nasi A., Ferranti P., Amato S., Chianese L. (2008). Food Chem. 110: 762-768
Ferreira V., Lopez R. (2019). Biomolecules 9(12): 818- doi:10.3390/biom9120818
Panighel A., Flamini R. (2014). Molecules 19: 21291-21309 doi:10.3390/molecules191221291
Flamini R., De Rosso M., Panighel A., Dalla Vedova A., De Marchi F., Bavaresco L. (2014). J. Mass Spec. 49(12): 1214-1222 doi:10.1002/jms.34411214

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panighel Annarita¹, Fugaro Michele², Mazzei Raffaele Antonio², De Rosso Mirko¹, De Marchi Fabiola¹ and Flamini Riccardo¹

¹Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE)
²Dipartimento dell’Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari – ICQRF NORD-EST

Contact the author

Keywords

Glycosides, grape, aroma, mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Circular viticulture: transforming grapevine waste into sustainable fibers

Annually, around 31.95 million tonnes of grapevine prunings are produced worldwide as agricultural waste.

Investigation on harvesting period choices for correct interpretation of experimental results

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.