IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Abstract

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin. These secondary metabolites are the aromatic precursors fraction of grape which is liberated in wine during fermentation. Knowledge of their profile is often required to estimate the aromatic potential transferable to the wine and for chemotaxonomic aims (Nasi et al., 2008; Ferreira and Lopez, 2019).

In general, the methods used to study glycosidic aroma profile involve sample extraction and concentration by passage of large volumes of must or grape extract through a SPE cartridge (the stationary phases commonly used are 1-10 g of C18 or polystyrene-divinylbenzene), then the methanolic fraction eluted containing the glycoside compounds is carried to dryness, resolubilized using a citrate pH 5 buffer, and an enzymatic hydrolysis is carried out overnight to liberate the aglycones which are then analyzed by GC/MS. Main advantage of SPE is until 1000-fold concentration of sample which allows to detect also compounds present at low level but which can play important role in determining the organoleptic characteristics of wine. Usually, the selectivity of SPE towards the compounds studied is low, so performing quantitation by expressing the compounds as mg internal standard/kg grape provides accuracy acceptable for the aim of the study. On the other hand, SPE is laborious, needs long time and is hardly applicable in quality control laboratories. SPME is faster but the selectivity of fiber towards the analytes is often very different and to perform acceptable quantitative analysis it is essential the calculation of calibration curves. Unfortunately, just few standards of the grape aroma compounds are commercially available (Panighel et al., 2014).

In this study SPE-GC/MS and SPME-GC/MS methods are compared by performing analysis of a set of model standard solutions and grape must samples. The use of several internal standards allows to estimate recoveries of the analytes and calculation of corrective coefficients between the two methods. To have also information free of enzymatic artifacts, GC/MS results are crossed with profile of glycosidic aroma precursors determined by LC/QTOF analysis (Flamini et al., 2014).

The study is finalized to develop a quick SPME-GC/MS method which provides exhaustive and reliable qualitative and semi-quantitative information on the grape glycosidic aroma precursors

References

Nasi A., Ferranti P., Amato S., Chianese L. (2008). Food Chem. 110: 762-768
Ferreira V., Lopez R. (2019). Biomolecules 9(12): 818- doi:10.3390/biom9120818
Panighel A., Flamini R. (2014). Molecules 19: 21291-21309 doi:10.3390/molecules191221291
Flamini R., De Rosso M., Panighel A., Dalla Vedova A., De Marchi F., Bavaresco L. (2014). J. Mass Spec. 49(12): 1214-1222 doi:10.1002/jms.34411214

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Panighel Annarita¹, Fugaro Michele², Mazzei Raffaele Antonio², De Rosso Mirko¹, De Marchi Fabiola¹ and Flamini Riccardo¹

¹Council for Agricultural Research and Economics – Viticulture & Oenology (CREA-VE)
²Dipartimento dell’Ispettorato centrale della tutela della qualità e repressione frodi dei prodotti agroalimentari – ICQRF NORD-EST

Contact the author

Keywords

Glycosides, grape, aroma, mass spectrometry

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Unravelling the mystery of drought tolerance confered by rootstocks

Climate change will increase the frequency of water deficit experienced in certain european regions, due to increased evapotranspiration and reduced rainfall during the growing cycle. We therefore need to find ways of adaption, including the use of more drought-tolerant planting material. In addition to the varieties used as grafts and involved in the wine ypicity of our wines, rootstocks selection is a relevant way of adapting to more restrictive environmental conditions.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.

INVESTIGATION INTO MOUSY OFF-FLAVOR IN WINE USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY WITH STIR BAR SORPTIVE EXTRACTION

Mousy off-flavor is one of the defects of microbial origin in wine. It is described as a particularly unpleasant defect reminiscent of rodent urine (a “dirty mouse cage”), and grilled foods such as popcorn, rice, crackers, and bread crust. Prior to the 2010s, mousiness was very uncommon but it has been becoming more frequent in recent years. It is often associated with an increase in pH as well as certain oenological practices, which tend to significantly decrease the use of sulfur dioxide.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.