terclim by ICS banner
IVES 9 IVES Conference Series 9 BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

BIOPROTECTION BY ADDING NON-SACCHAROMYCES YEASTS : ADVANCED RESEARCH ON THIS PROMISING ALTERNATIVE TO SO₂

Abstract

Sulphur dioxide has been used for many years for its antimicrobial, antioxidant and antioxydasic properties in winemaking but nowadays, it is a source of controversy. Indeed, consumers are more attentive to the naturalness of their foods and beverages and the legislation is changing to reduce the total SO₂ levels allowed in wines. To limit and replace the doses of sulphur dioxide applied, winemakers can now use bioprotection consisting in live yeast addition as alternative,seems to be promising. This process, lightly used in from the food industry, allows to colonize the environment and limit the development or even eliminate undesirable microorganisms without altering the sensory properties of the product. Recent research took the advantage of the availability of commercial non-Saccharomyces yeast to evaluate their bioprotective potential in oenology. From 2017 to 2021, different experiments were conducted using a mixture of two species (Torulaspora delbrueckii and Metschnikowia pulcherrima) as bioprotection applied at 50 mg/L directly on grapes or musts on different varieties and ripening stages. Our data showed that the bioprotection was successfully implanted in the medium, whith a lower colonization for over-ripened harvests. By using 18S metabarcoding analysis in grape must, we showed that fungal communities such as Hanseniaspora, Aspergillus or Botrytis were significantly less abundant when bio- protection was applied instead of SO₂. Furthermore, bioprotection added in the must rapidly consumed dissolved O₂ and had a negative impact on the strict aerobic acetic acid bacteria by limiting the development of these spoilage microorganisms. Experiments carried out in white must showed that bioprotection also limits the oxidation phenomena: the concentrations of glutathione were significantly higher in bioprotected white musts and final wines. Finally, bioprotection used in red winemaking presents a chemical signature, characterized by fatty acid ethyl esters, increasing the perception of fruitiness in young red wines, but to a lesser extend compared to the same yeast strains in mixed fermentation with S. cerevisiae. After bottling, the bioprotected wines were not sensorially different from wines without SO₂ addition but were different from classical sulphited wines. This research confirm the antimicrobial and a partial protection from oxidation by bioprotection in winemaking and its capacity to preserve sensory properties of wines.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Sara Windholtz1,2,Claudia Nioi1,2, Edouard Pelonnier-Magimel1,2, Joana Coulon³, Emmanuel Vinsonneau⁴, Stéphane Becquet⁵, Georgia Lytra1,2, Cécile Thibon1,2, Isabelle Masneuf-Pomarède1,2

1. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
3. Biolaffort, 11 Rue Aristide Bergès, 33270, Floirac, France
4. Institut Français de la Vigne et du Vin, Blanquefort, France
5. Syndicat des Vignerons Bio Nouvelle-Aquitaine, Montagne, France 

Contact the author*

Keywords

Bioprotection, Non-Saccharomyces, SO₂ alternative

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

AGING PATTERNS OF VARIETAL VOLATILE PROFILES OF WHITE WINES: A CASE STUDY ON 18 ITALIAN VARIETAL WHITE WINES

During wine aging many compositional changes take place. In particular, aroma undergoes dramatic modifications through a wide range of reactions that to date are only partly understood. Italy owns one of the largest ampelographic heritages worldwide, with over three-hundred different varieties. Among these, many white grapes are employed for the production of dry still white wines. Some of these wines are consumed young while others are more prone to aging. For many of these wines, the aging patterns related to volatile composition are still unknown.

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.